Part No.: H-T-083

Leading Life Science Innovation

Address: Building 24, Stage 3.1, BioLake Accelerator, No.388, 2nd Gaoxin Road, East Lake High-Tech Development Zone, 430075, Wuhan, P.R.China Building B13, No.818, Gaoxin Avenue, East Lake High-Tech Development Zone, 430075, Wuhan, P.R.China E-mail: MGI-service@mgi-tech.com Website: www.mgi-tech.com

Wuhan MGI Tech Co., Ltd.

High-throughput Sequencing Set

DNBSEQ-G99RS

User Manual

Version: 3.0

About the user manual

This user manual is applicable to DNBSEQ-G99RS High-throughput Sequencing Set. The manual version is 3.0 and the set version is 1.0.

This user manual and the information contained within are proprietary to Wuhan MGI Tech Co., Ltd. (hereinafter called MGI), and are intended solely for the contractual use of its customer in connection with the use of the product described herein and for no other purpose. Any person or organization cannot entirely or partially reprint, copy, revise, distribute or disclose to others the user manual without the prior written consent of MGI. Any unauthorized person should not use this user manual.

MGI does not make any promise of this user manual, including (but not limited to) any commercial special purpose and any reasonable implied guarantee. MGI has taken measures to guarantee the correctness of this user manual. However, MGI is not responsible for any missing parts in the manual, and reserves the right to revise the manual and the device, so as to improve the reliability, performance or design.

Figures in this user manual are all illustrations. The contents might be slightly different from the kit, please refer to the kit purchased.

*Unless otherwise informed, StandardMPS and CoolMPS sequencing reagents, and sequencers for use with such reagents are not available in Germany, Spain, UK, Hong Kong, Sweden, Belgium, Italy, Finland, Czech Republic, Switzerland, Portugal, Austria and Romania. No purchase orders for CoolMPS products will be accepted in the USA until after August 22, 2022.

DNBSEQTM is trademarks of MGI, or its subsidiaries. NextSeqTM and TruSeqTM are trademarks of Illumina, Inc., or its subsidiaries. QubitTM is the trademark of Thermo Fisher Scientific, or its subsidiaries. Other company, product names, and other trademarks are the property of their respective owners.

©2022-2023 Wuhan MGI Tech Co., Ltd. All rights reserved.

Revision history

Version	Date	Description
3.0	July 2023	Add G99 SM FCL PE300Update interface diagram
2.0	February 2023	Add G99 SM FCL SE400 and G99 SM App-C FCL SE100.
1.0	August 2022	The first version.

Sequencing kit

Catalog number	Name	Model	Version
940-000409-00	DNBSEQ-G99RS High-throughput Sequencing Set	G99 SM FCL SE100/PE50	1.0
940-000410-00	DNBSEQ-G99RS High-throughput Sequencing Set	G99 SM FCL PE150	1.0
940-000520-00	DNBSEQ-G99RS High-throughput Sequencing Set	G99 SM App-C FCL SE100	1.0
940-000413-00	DNBSEQ-G99RS High-throughput Sequencing Set	G99 SM App-C FCL PE150	1.0
940-000417-00	DNBSEQ-G99RS High-throughput Sequencing Set	G99 SM FCL SE400	1.0
940-000415-00	DNBSEQ-G99RS High-throughput Sequencing Set	G99 SM FCL PE300	1.0

Contents

	luction	
	1.1 Applications	
	1.2 Sequencing technology	
	1.3 Data analysis	
	1.4 Sequencing read length	
	1.5 Sequencing time and analysis time	
	1.6 Attention	
Chapter 2 Seque	encing sets and user-supplied	
consumables		4
	2.1 List of sequencing set components	2
	2.2 Self-prepared equipment and consumables	5 1
Chapter 3 Seque	encing workflow	12
	•	
Chapter 4 Makir	ng DNB	13
Chapter 4 Makir	9 DNB 4.1 Insert size recommendation	13
Chapter 4 Makir	9 DNB 4.1 Insert size recommendation 4.2 Library concentration and amount require	13 13 emen 13
Chapter 4 Makir	Ang DNB 4.1 Insert size recommendation 4.2 Library concentration and amount require 4.3 Making DNB	13 13 emen 13 14
Chapter 4 Makir	A.1 Insert size recommendation 4.2 Library concentration and amount require 4.3 Making DNB 4.3.1 Making DNB for G99 SM FCL SE100, G99 S PE50 and G99 SM FCL PE150	13 13 2000 13 14 14 M FCI 14
Chapter 4 Makir	4.1 Insert size recommendation 4.2 Library concentration and amount require 4.3 Making DNB 4.3.1 Making DNB for G99 SM FCL SE100, G99 S PE50 and G99 SM FCL PE150 4.3.2 Making DNBs for G99 SM App-C FCL SE100 G99 SM App-C FCL PE150	13 13 20 14 12 14 M FCI 14 and 1
Chapter 4 Makir	 A.1 Insert size recommendation 4.2 Library concentration and amount require 4.3 Making DNB 4.3.1 Making DNB for G99 SM FCL SE100, G99 S PE50 and G99 SM FCL PE150 4.3.2 Making DNBs for G99 SM App-C FCL SE100 G99 SM App-C FCL PE150 4.3.3 Making DNB of G99 SM FCL SE400 	13 22 20 13 14 12 12 14 11 12 11 12 12
Chapter 4 Makir	 A.1 Insert size recommendation 4.2 Library concentration and amount require 4.3 Making DNB 4.3.1 Making DNB for G99 SM FCL SE100, G99 SPE50 and G99 SM FCL PE150 4.3.2 Making DNBs for G99 SM App-C FCL SE100 G99 SM App-C FCL PE150 4.3.3 Making DNB of G99 SM FCL SE400 4.3.4 Making DNB of G99 SM FCL PE300 	1: 2: 2: 2: 2: 2:
Chapter 4 Makir	 A.1 Insert size recommendation 4.2 Library concentration and amount require 4.3 Making DNB 4.3.1 Making DNB for G99 SM FCL SE100, G99 S 4.3.2 Making DNBs for G99 SM App-C FCL SE100 G99 SM App-C FCL PE150 4.3.3 Making DNB of G99 SM FCL SE400 4.3.4 Making DNB of G99 SM FCL PE300 4.4 Quantifying DNB 	12 13 20 14 12 14 15 14 15 14 12 11 12 12 12 12 12 12 12 12 12 12 12

Chapter 6 Preparing the sequencing reagent cartridge 27

Chapter 7 Perform	ning a sequencing run	30
	7.1 Checking before sequencing	30
	7.2 Setting the sequencing parameters	31
	7.2.1 Setting sequence only parameters	32
	7.2.2 Setting sequence & analysis parameters	34
	7.2.3 Setting BBS parameters	36
	7.3 Loading the reagent cartridge	37
	7.4 Loading DNBs by DL-G99	40
	7.4.1 Preparing reagents	40
	7.4.2 Loading DNBs	41
	7.5 Loading flow cell	43
	7.6 Reviewing parameters	45
	7.7 Starting sequencing	46
	7.8 Data access	47
Chapter 8 Device	Maintenance	47
	8.1 Wash instruction	47
	8.2 Preparing for wash	49
	8.2.1 Preparing washing reagents	49
	8.2.2 Preparing washing cartridge	49
	8.2.3 Performing a wash	50
Chapter 9 Trouble	eshooting	57
	9.1 Low DNB concentration	57
	9.2 For PE sequencing run, forgot to add re into MDA well	əagent 57
	9.3 Reagent kit storage rules	63
	9.4 An error occurs before washing	64
	9.5 Abnormal negative pressure appears durin cell attachment	ng flow 65
	9.6 Impurities appear in the original seque image	encing 66

Chapter 10	Important interfaces for customizing a run	66
	10.1 Customize a recipe interface	67
	10.2 Customize interface	67
	10.3 Barcode (not predefined) interface	68
	10.4 Examples of customized run	70
	10.4.1 Read1/Read2 lengths are not the same as	those
	predefined in the Recipe list	70
	10.4.2 Length of the single barcode is not 10	71
	10.4.3 A dual barcode sequencing run	72
	10.4.4 Dark reaction cycles are required in read1 a	nd/or
	read2 sequencing	73

Appendix 1 Qubit ssDNA assay kit	75

Appendix 2 Manufacturer

77

Chapter 1 Introduction

This manual describes how to perform sequencing using DNBSEQ-G99RS High-throughput Sequencing Set, Includes instructions regarding sample preparation, making DNB, flow cell preparation, DNB loading, Sequencing Reagent Cartridge preparation, sequencing preprocessing, sequencing protocol, and device maintenance.

1.1 Applications

DNBSEQ-G99RS High-throughput Sequencing Set is specifically designed for DNA or RNA sequencing on DNBSEQ-99RS or DNBSEQ-99ARS. This sequencing set is intended to be used for scientific research only, Which cannot be used for clinical diagnosis.

1.2 Sequencing technology

This sequencing set utilizes DNBSEQ technology. A sequencing run starts with the hybridization of a DNA anchor, then a fluorescent probe is attached to the DNA Nanoball (DNB) using combinatorial probe anchor sequencing (cPAS) chemistry. Finally, the high-resolution imaging system captures the fluorescent signal. After digital processing of the optical signal, the sequencer generates high quality and high accuracy sequencing information.

1.3 Data analysis

During the sequencing run, the control software automatically operates basecalling analysis software and delivers raw sequencing data outputs for secondary analysis.

1.4 Sequencing read length

Sequencing read length will determine the number of sequencing cycles for a given sequencing run. For example, a PE150 cycle run performs reads of 150 cycles (2×150) for a total of 300 cycles. At the end of the insert sequencing run, one or two extra 10 cycles of **barcode** read can be performed, if required.

Sequencing read length	Read 1 read length	Read 2 read length	Barcode read length	Total read length	Maximum cycles
SE100	100	/	10	100+10	132
PE50	50	50	10	50+50+10	132
PE150	150	150	10	150+150+10	332
SE400	400	/	10	400+10	432
PE300	300	300	10	300+300+10	632

Table 1 Sequencing cycle

1.5 Sequencing time and analysis time

- Tips The sequencing time (Single flow cell/Dual flow cells) in the table above is the time required from loading to sequencing completion. The data analysis time includes the time required for barcode demultiplexing (if **Split barcode** is selected) and FASTQ files output when sequencing is completed.
 - The time in the table above is measured for single barcode.
 - The time in the table above is average value. Actual run time may vary among various sequencers.

Туре	Read length	Sequencing time	Analysis time
	SE100	4.16	0.17
	PE50	5.16	0.17
Single flow cell	PE150	11.83	0.17
	SE400	18.18	0.17
	PE300	28.59	0.17
	SE100	4.30	0.34
	PE50	5.30	0.34
Dual flow cell	PE150	11.96	0.34
	SE400	18.35	0.34
	PE300	28.76	0.34

Table 2 FCL Sequencing time and analysis time for each read length (hours)

1.6 Attention

- This product is restricted for research use only, please read the manual carefully before use.
- Make sure that you are familiar with the user manual & attention of all the laboratory apparatus to be used.
- Avoid direct skin and eye contact with any samples and reagents. Don't swallow. Please wash with plenty of water immediately and get medical aid if this happened.
- All the samples and waste materials should be disposed of according to relevant laws and regulations.
- This product is for one sequencing run only and cannot be reused.
- The components are separate from the batch of the kit, do not remove the components, keep them in the box until use. Mixing of reagent components between different batches is strictly prohibited.
- Do not use expired products.

Chapter 2 Sequencing sets and user-supplied consumables

2.1 List of sequencing set components

Tips It is worth reminding that:

- A sequencing set includes a sequencing flow cell, a Sequencing Reagent Cartridge and reagents for sequencing.
- To perform SE35, SE50 or PE50 sequencing, please use the Highthroughput Sequencing Set (G99 SM FCL S100/PE50).
- To perform PE100 sequencing, please use the High-throughput Sequencing Set (G99 SM FCL PE150).
- Sequencing reagent cartridge can be stacked for storage, and it is recommended that the number of stacked layers should not exceed three.
- The High-throughput Sequencing Set (G99 SM FCL SE400) can not be used to perform sequencing of PE and SE150 or below.
- The High-throughput Sequencing Set (G99 SM FCL PE300) can not be used to perform sequencing of SE and PE150 or below.

Component	Cap color	Spec & quantity	Storage temperature	Transportation temperature
DNBSEQ-G99 Sequencing Flow Cell	/	1 EA		
Low TE Buffer	\bigcirc	100 µL×1 tube		
Make DNB Buffer	\bigcirc	20 µL×1 tube		
Make DNB Enzyme Mix I		40 µL×1 tube		
Make DNB Enzyme Mix II (LC)		13 µL×1 tube		
Stop DNB Reaction Buffer	0	50 µL×1 tube	-25 °C to -15 °C	-80 °C to -15 °C
DNB Load Buffer II	0	50 µL×1 tube	20 0 10 10 0	
MDA Enzyme Mix		0.125 mL×1 tube		
MDA Reagent	\bigcirc	1.0 mL×1 tube		
FTAT premixed compaction block	/	1 EA		
Micro Tube 0.5 mL (Empty)	\bigcirc	1 tube		
Sequencing Reagent Cartridge	/	1 EA		

Table 3 High-throughput Sequencing Set (G99 SM FCL SE100/PE50) Catalog number: 940-000409-00

Component	Cap color	Spec & quantity	Storage temperature	Transportation temperature
DNBSEQ-G99 Sequencing Flow Cell	/	1 EA		
Low TE Buffer	igodol	100 µL×1 tube		
Make DNB Buffer	\bigcirc	20 µL×1 tube		
Make DNB Enzyme Mix I		40 µL×1 tube		
Make DNB Enzyme Mix II (LC)		13 µL×1 tube		
Stop DNB Reaction Buffer	0	50 µL×1 tube	-25 ℃ to -15 ℃	-80 °C to -15 °C
DNB Load Buffer II	0	50 µL×1 tube		
MDA Enzyme Mix		0.125 mL×1 tube		
MDA Reagent	\bigcirc	1.0 mL×1 tube		
FTAT premixed compaction block	/	1 EA		
Micro Tube 0.5 mL (Empty)	\bigcirc	1 tube		
Sequencing Reagent Cartridge	/	1 EA		

Table 4 High-throughput Sequencing Set (G99 SM FCL PE150) Catalog number: 940-000410-00

Component	Cap color	Spec&quantity	Storage temperature	Transportation temperature
DNBSEQ-G99 Sequencing Flow Cell	/	1 EA		
Low TE Buffer	\bigcirc	100 µL×1 tube		
App-C Make DNB Buffer	\bigcirc	20 µL×1 tube		
Make DNB Enzyme Mix I		40 µL×1 tube		
Make DNB Enzyme Mix II (LC)		13 µL×1 tube	-25 ℃ to -15 ℃	-80 °C to -15 °C
Stop DNB Reaction Buffer	0	50 µL×1 tube	20 0 10 10 0	
DNB Load Buffer II	0	50 µL×1 tube		
FTAT premixed compaction block	/	1 EA		
Micro Tube 0.5 mL (Empty)	\bigcirc	1 tube		
Sequencing Reagent Cartridge	/	1 EA		

Table 5 High-throughput Sequencing Set (G99 SM App-C FCL SE100) Catalog number: 940-000520-00

Table 6	High-throughput	Sequencing	Set (G99	SM App-C FCL PE150))
	Catalog	number: 94	0-000413	-00	

Component	Cap color	Spec & quantity	Storage temperature	Transportation temperature
DNBSEQ-G99 Sequencing Flow Cell	/	1 EA		
Low TE Buffer	\bigcirc	100 µL×1 tube		
App-C Make DNB Buffer	\bigcirc	20 µL×1 tube		
Make DNB Enzyme Mix I		40 µL×1 tube		
Make DNB Enzyme Mix II (LC)		13 µL×1 tube		
Stop DNB Reaction Buffer	0	50 µL×1 tube	-25 ℃ to -15 ℃	-80 °C to -15 °C
DNB Load Buffer II	0	50 µL×1 tube	20 0 10 10 0	
MDA Enzyme Mix	0	0.125 mL×1 tube		
MDA Reagent	\bigcirc	1.0 mL×1 tube		
FTAT premixed compaction block	/	1 EA		
Micro Tube 0.5 mL (Empty)	\bigcirc	1 tube		
Sequencing Reagent Cartridge	/	1 EA		

Table 7 High-throughput Sequencing Set (G99 SM FCL SE400) Catalog number: 940-000417-00

Component	Cap color	Spec & quantity	Storage temperature	Transportation temperature
DNBSEQ-G99 Sequencing Flow Cell	/	1 EA		
Low TE Buffer	\bigcirc	100 µL×1 tube		
Make DNB Buffer		20 µL×1 tube		
Make DNB Enzyme Mix V		40 µL×1 tube		
Make DNB Enzyme Mix II (LC)		13 µL×1 tube	-25 ℃ to -15 ℃	-80 °C to -15 °C
Stop DNB Reaction Buffer	0	50 µL×1 tube	20 0 10 10 0	
DNB Load Buffer II	0	50 µL×1 tube		
FTAT premixed compaction block	/	1 EA		
Micro Tube 0.5 mL (Empty)	\bigcirc	1 tube		
Sequencing Reagent Cartridge	/	1 EA		

Component	Cap color	Spec & quantity	Storage temperature	Transportation temperature
DNBSEQ-G99 Sequencing Flow Cell	/	1 EA		
Low TE Buffer	•	100 µL×1 tube		
Make DNB Buffer		20 µL×1 tube		
Make DNB High-efficiency Enzyme Mix V		40 µL×1 tube		
Make DNB Enzyme Mix II (LC)		13 µL×1 tube		
Stop DNB Reaction Buffer	0	50 µL×1 tube	-25 °C to -15 °C	-80 °C to -15 °C
DNB Load Buffer II	0	60 µL×1 tube		
MDA Enzyme Mix	0	0.125 mL×1 tube		
MDA Reagent	\bigcirc	1.0 mL×1 tube		
FTAT premixed compaction block	/	1 EA		
Micro Tube 0.5 mL (Empty)	\bigcirc	1 tube		
Sequencing Reagent Cartridge	/	1 EA		

Table 8 High-throughput Sequencing Set (G99 SM FCL PE300) Catalog number: 940-000415-00

Table 9 DNBSEQ-G99 Cleaning Reagent Kit (G99 FCL) Catalog number: 940-000624-00

Component	Spec & quantity	Storage temperature	Transportation temperature
Washing Cartridge	1 EA	0 ℃ to 30 ℃	below 40 °C

2.2 Self-prepared equipment and consumables

- Avoid making and loading DNBs by the pipette tips with filter. It is necessary to use the pipette tips with recommended brands and catalog number.
 - Recommended brands and catalog number are suggested for other consumables..

Equipment	Recommended brand	Catalog number
Qubit 4 Fluorometer	Thermo Fisher	Q33226
Mini spinner	Major Laboratory Supplier (MLS)	/
Vortex mixer	MLS	/
Thermal cycler	Bio-Rad	/
Graduated cylinder, 500 mL	MLS	/
Pipette, 20 µL	Eppendorf or equivalent	/
Pipette, 200 µL	Eppendorf or equivalent	/
Pipette, 1000 µL	Eppendorf or equivalent	/
2 °C to 8 °C refrigerator	MLS	/
-25 °C to -15 °C freezer	MLS	/
Ice bucket	MLS	/
Electronic pipette	Labnet	FASTPETTEV-2

Table 10 Self-prepared equipment

Table 11 Recommended reagents/consumables

Consumable	Recommended brand	Catalog number
2 M NaOH solution	MLS	/
Qubit ssDNA Assay Kit	Thermo Fisher	Q10212
Qubit Assay Tubes	Thermo Fisher	Q32856
0.5 mL Thin Wall PCR Tubes with Flat Cap, Clear, Nonsterile (PCR- 05-C)	AXYGEN	10011-830
Canned air duster	MATIN	M-6318
Sterile pipette tip(various types)	AXYGEN	/
200 µL Wide Bore Tips	MGI	091-000355-00

Consumable	Recommended brand	Catalog number
Sterile 200 μL wide-bore non-filtered pipette tip	AXYGEN	T-205-WB-C
0.2 mL PCR 8-tube strip, 0.2 mL	AXYGEN	/
Sterile microcentrifuge tube, 1.5 mL	AXYGEN	MCT-150-C
Disposable gloves, powder-free	MLS	/
KimWipes	MLS	/
Low-lint cloth	MLS	/
Water, laboratory-grade	MLS	/

Chapter 3 Sequencing workflow

Figure 1 Sequencing workflow

Chapter 4 Making DNB

4.1 Insert size recommendation

Recommended library insert size: The size distribution of inserts should be between 200 to 700 bp, with the main band centered within ±100 bp.

- Tips Select sequencing sets according to the insert size and the required data output.
 - Average data output will vary with different library types and applications.
 - If there are special requirements or specifications of the library preparation kit, the requirements of the kit should be followed.

Table 12 Recommended insert size

Product model	Suggested insert distribution (bp)	Data output (Gb/FC)
G99 SM FCL SE100/PE50	200 to 400	8.0
G99 SM FCL PE150	300 to 500	24.0
G99 SM App-C FCL SE100	300 to 500	8.0
G99 SM App-C FCL PE150	300 to 500	24.0
G99 SM FCL SE400	400 to 600	32.0
G99 SM FCL PE300	400 to 700	48.0

4.2 Library concentration and amount requirement

Y Tips If the library concentration is unknown, it is recommended to perform ssDNA library quantitation (ng/ μ L) using Qubit ssDNA Assay Kit and Qubit 4 fluorometer. Use the equation below to convert the concentration of the ssDNA library from ng/ μ L to fmol/ μ L.

C (fmol/ μ L)=3030×C (ng/ μ L)/N

N represents the number of nucleotides (total library length including the adapter).

Table 13 Library requirement

Library type	Library concentration
General libraries	≥2 fmol/µL

Library type	Library concentration
PCR free libraries	≥3.75 fmol/µL
App-C ssDNA libraries	≥3 fmol/µL
ssDNA libraries for PE300	≥3 fmol/µL

4.3 Making DNB

- Tips Mixed use of reagent components from different batches is strictly prohibited.
 - Avoid making and loading DNBs by the pipette tips with filter. It is necessary to use the pipette tips with recommended brands and catalog number.

DNB making protocols are listed in the sections listed below. Select the appropriate one according to the sequencing sets used.

- Making DNB for G99 SM FCL SE100, G99 SM FCL PE50 and G99 SM FCL PE150 on Page 14.
- Making DNBs for G99 SM App-C FCL SE100 and G99 SM App-C FCL PE150 on Page 17.
- Making DNB of G99 SM FCL SE400 on Page 20.
- Making DNB of G99 SM FCL PE300 on Page 23.

4.3.1 Making DNB for G99 SM FCL SE100, G99 SM FCL PE50 and G99 SM FCL PE150

4.3.1.1 Preparing reagents for DNB making

Perform the following steps:

- 1. Place the library on ice until use.
- 2. Take out Low TE Buffer, Make DNB Buffer and Stop DNB Reaction Buffer from storage and thaw reagents at room temperature.
- 3. Thaw Make DNB Enzyme Mix I for approximately 0.5 hours on ice.
- 4. After thawing, mix reagents thoroughly by using a vortex mixer for 5 seconds. Centrifuge briefly and place it on ice until use.

4.3.1.2 Calculating the required amount of ssDNA library

- The required volume of ssDNA libraries is determined by the required library amount (fmol) and library concentration quantified in *Library concentration* and amount requirement on Page 13.
 - **Tips** If there are special requirements or specifications of the library preparation kit, then the requirements of the kit should be followed.

Table 14 Required amount of ssDNA libraries

Library type	Volume (µL)
General libraries	V=20 fmol/C
PCR free libraries	V= 37.5 fmol/C

 Calculate the required ssDNA libraries for each Make DNB reaction and fill it in Make DNB reaction mix 1 on Page 15 as V.

4.3.1.3 Making DNB

- 1. Take out 0.2 mL PCR 8-tube strip or PCR tubes. Prepare Make DNB reaction mix 1 according to the table below for different library types.
 - **Tips** V represents variable sample volume as determined in *Calculating the required amount of ssDNA library on Page 14.*
 - Keep Low TE Buffer on ice after use. It may be used for DNB dilution.

	Table	15	Make	DNB	reaction	mix	1
--	-------	----	------	-----	----------	-----	---

Component	Volume (µL)
Low TE Buffer	10-V
Make DNB Buffer	10
ssDNA libraries	V
Total volume	20

- 2. Mix the reaction mixture thoroughly by using a vortex mixer for 5 seconds, centrifuge for 5 seconds and place it on ice until use.
- 3. Place the mixture into a thermal cycler and start the primer hybridization reaction. Thermal cycler settings are shown following the table below:

Table 16 Primer hybridization reaction conditions

Temperature	Time
Heated lid (105 °C)	On
95 ℃	1 min
65 ℃	1 min
40 °C	1 min
4 °C	Hold

- 4. Take out the Make DNB Enzyme Mix II (LC) from storage and place it on ice. Centrifuge briefly for 5 seconds and hold on ice.
 - Tips Do not place Make DNB Enzyme Mix II (LC) at room temperature.
 - Avoid holding the tube for a prolonged time.
- 5. Take the PCR tube out of the thermal cycler when the temperature reaches 4 $^{\circ}\mathrm{C}$.
- 6. Centrifuge briefly for 5 seconds, place the tube on ice and prepare the Make DNB reaction mix 2 following the table below:

Table	17	Make	DNB	reaction	mix 2	

Component	Volume (µL)
Make DNB Enzyme Mix I	20
Make DNB Enzyme Mix II (LC)	2
Total volume	22

- 7. Add all the Make DNB reaction mix 2 into the Make DNB reaction 1. Mix thoroughly by reagents using a vortex mixer for 5 seconds, centrifuge briefly and place the tubes into the thermal cycler for the next reaction. The conditions are shown following the table below:
 - Tips As some thermal cyclers are slow in temperature adjustment. When the heated lid is being heated or cooled, the sample block may remain at room temperature and the procedure is not performed. For these types of thermal cyclers, pre-heating of the heated lid is required to ensure the heated lid is at working temperature during the DNB reaction.
 - It is recommended to set the temperature of the heated lid to 35 $^{\circ}\mathrm{C}$ or the temperature closest to 35 $^{\circ}\mathrm{C}$.

Table 18 RCR (Rolling circle replication) conditions

Temperature	Time
Heated lid (35 °C)	On
30 °C	20 min
4 °C	Hold

8. Immediately add 10 µL Stop DNB Reaction Buffer once the temperature reaches 4 °C. Mix gently by pipetting 8 times using a wide-bore non-filtered pipette tip.

- Tips Do not vortex, shake the tube or pipette vigorously.
 - It is very important to mix DNB gently using a wide-bore non-filtered pipette tip and it is strongly recommended to use 200 uL Wide Bore Tips with MGI brand.
 - Store DNB at 4 °C and perform sequencing within 48 hours.
- 9. For the next step, refer to Quantifying DNB on Page 25.

4.3.2 Making DNBs for G99 SM App-C FCL SE100 and G99 SM App-C FCL PE150

4.3.2.1 Preparing reagents for DNB making

Perform the steps below:

- 1. Place the library on ice until use.
- 2. Take out Low TE Buffer, App-C Make DNB Buffer and Stop DNB Reaction Buffer from storage and thaw reagents at room temperature.
- 3. Thaw Make DNB Enzyme Mix I for approximately 0.5 hours on ice.
- 4. After thawing, mix reagents thoroughly by using a vortex mixer for 5 seconds. Centrifuge briefly and place it on ice until use.

4.3.2.2 Calculating the required amount of ssDNA libraries

• The required volume of ssDNA libraries is determined by the required library amount (fmol) and library concentration quantified in Library concentration and amount requirement on Page 13.

Y Tips If there are special requirements or specifications of the library preparation kit, then the requirements of the kit should be followed.

Table 19 Required amount of ssDNA libraries

Library type	Volume (µL)
App-C ssDNA libraries	V=30 fmol/C
PCR free libraries	V=37.5 fmol/C

• Calculate the required ssDNA libraries for each Make DNB reaction and fill it in *Make DNB reaction mix 1 on Page 18* as V.

4.3.2.3 Making DNBs

Perform the steps below:

- 1. Take out 0.2 mL PCR 8-tube strip or PCR tubes. Prepare Make DNB reaction mix 1 according to the table below for different library types.
 - Tips V represents variable sample volume as determined in Calculating the required amount of ssDNA libraries on Page 17.
 - Keep Low TE Buffer on ice after use. It may be used for DNB dilution.

Component	Volume (µL)
Low TE Buffer	10-V
App-C Make DNB Buffer	10
ssDNA libraries	V
Total volume	20

Table 20 Make DNB reaction mix 1

- 2. Mix the reaction mixture thoroughly by using a vortex mixer for 5 seconds, centrifuge for 5 seconds and place it on ice until use.
- 3. Place the mixture into a thermal cycler and start the primer hybridization reaction. Thermal cycler settings are shown following the table below:

Table 21 Primer hybridization reaction conditions

Temperature	Time
Heated lid (105 °C)	On
95 ℃	1 min
65 ℃	1 min
40 °C	1 min
4 °C	Hold

- 4. Take out the Make DNB Enzyme Mix II (LC) from storage and place it on ice. Centrifuge briefly for 5 seconds and hold on ice.
 - Tips Do not place Make DNB Enzyme Mix II (LC) at room temperature.
 - Avoid holding the tube for a prolonged time.
- 5. Take the PCR tube out of the thermal cycler when the temperature reaches 4 $^{\circ}\mathrm{C}$.
- 6. Centrifuge briefly for 5 seconds, place the tube on ice and prepare the Make DNB reaction mix 2 following the table below:

Component	Volume (µL)
Make DNB Enzyme Mix I	20
Make DNB Enzyme Mix II (LC)	2
Total volume	22

Table 22 Make DNB reaction mix 2

- 7. Add all the Make DNB reaction mix 2 into the Make DNB reaction 1. Mix thoroughly by reagents using a vortex mixer for 5 seconds, centrifuge briefly and place the tubes into the thermal cycler for the next reaction. The conditions are shown following the table below:
 - As some thermal cyclers are slow in temperature adjustment. When the heated lid is being heated or cooled, the sample block may remain at room temperature and the procedure is not performed. For these types of thermal cyclers, pre-heating of the heated lid is required to ensure the heated lid is at working temperature during the DNB reaction.
 - It is recommended to set the temperature of the heated lid to 35 $^{\circ}\mathrm{C}$ or the temperature closest to 35 $^{\circ}\mathrm{C}$.

Table	23	RCR	conditions

Temperature	Time
Heated lid (35 °C)	On
30 °C	20 min
4 ℃	Hold

- 8. Immediately add 10 µL Stop DNB Reaction Buffer once the temperature reaches 4 °C. Mix gently by pipetting 8 times using a wide-bore non-filtered pipette tip.
 - Tips Do not vortex, shake the tube or pipette vigorously.
 - It is very important to mix DNB gently using a wide-bore non-filtered pipette tip and it is strongly recommended to use 200 uL Wide Bore Tips with MGI brand.
 - Store DNB at 4 °C and perform sequencing within 48 hours.
- 9. For the next step, refer to Quantifying DNB on Page 25.

4.3.3 Making DNB of G99 SM FCL SE400

4.3.3.1 Preparing reagents for DNB making

Perform the following steps:

- 1. Place the library on ice until use.
- 2. Take out Make DNB Buffer, Low TE Buffer and Stop DNB Reaction Buffer from storage and thaw reagents at room temperature.
- 3. Thaw Make DNB Enzyme Mix V for approximately 0.5 hours on ice.
- 4. After thawing, mix reagents using a vortex mixer for 5 seconds. Centrifuge briefly and place on ice until use.

4.3.3.2 Calculating the required amount of ssDNA library

 The required volume of ssDNA libraries is determined by the required library amount (fmol) and library concentration quantified in Library concentration and amount requirement on Page 13.

Y Tips If there are special requirements or specifications of the library preparation kit, then the requirements of the kit should be followed.

Table 24 Required amount of ssDNA libraries

Library type	Volume (µL)
General libraries	V=20 fmol/C
PCR free libraries	V=37.5 fmol/C

 Calculate the required ssDNA libraries for each Make DNB reaction and fill it in Make DNB reaction mix 1 on Page 21 as V.

4.3.3.3 Making DNB

Perform the steps below:

- 1. Take out 0.2 mL PCR 8-tube strip or PCR tubes. Prepare Make DNB reaction mix 1 according to the table below for different library types.
 - **Tips** V represents variable sample volume as determined in *Calculating the required amount of ssDNA library on Page 20.*
 - Keep Low TE Buffer on ice after use. It may be used for DNB dilution.

Component	Volume (µL)
Low TE Buffer	10-V
Make DNB Buffer	10
ssDNA libraries	V
Total volume	20

Table 25 Make DNB reaction mix 1

- 2. Mix the reaction mixture thoroughly by using a vortex mixer for 5 seconds, centrifuge for 5 seconds and place it on ice until use.
- 3. Place the mixture into a thermal cycler and start the primer hybridization reaction. Thermal cycler settings are shown following the table below:

Table 26	Primer	hybridization	reaction	conditions
----------	--------	---------------	----------	------------

Temperature	Time
Heated lid (105 °C)	On
95 ℃	1 min
65 ℃	1 min
40 °C	1 min
4 °C	Hold

- 4. Take out the Make DNB Enzyme Mix II (LC) from storage and place it on ice. Centrifuge briefly for 5 seconds and hold on ice.
 - Tips Do not place Make DNB Enzyme Mix II (LC) at room temperature.
 - Avoid holding the tube for a prolonged time.
- 5. Take the PCR tube out of the thermal cycler when the temperature reaches $4\ ^{\mathrm{o}}\mathrm{C}$.
- 6. Centrifuge briefly for 5 seconds, place the tube on ice and prepare the Make DNB reaction mix 2 following the table below:

Table 27 Make DNB reaction mix 2

Component	Volume (µL)
Make DNB Enzyme Mix V	20
Make DNB Enzyme Mix II (LC)	2
Total volume	22

- 7. Add all the Make DNB reaction mix 2 into the Make DNB reaction 1. Mix thoroughly by reagents using a vortex mixer for 5 seconds, centrifuge briefly and place the tubes into the thermal cycler for the next reaction. The conditions are shown following the table below:
 - **P**Tips As some thermal cyclers are slow in temperature adjustment. When the heated lid is being heated or cooled, the sample block may remain at room temperature and the procedure is not performed. For these types of thermal cyclers, pre-heating of the heated lid is required to ensure the heated lid is at working temperature during the DNB reaction.
 - It is recommended to set the temperature of the heated lid to 35 °C or the temperature closest to 35 °C .

Table 28 RCR (Rolling circle replication) conditions

Temperature	Time
Heated lid (35 °C)	On
30 ℃	25 min
4 °C	Hold

8. Immediately add 10 µL Stop DNB Reaction Buffer once the temperature reaches 4 °C. Mix gently by pipetting 8 times using a wide-bore non-filtered pipette tip.

- **P** Tips Do not vortex, shake the tube or pipette vigorously.
 - It is very important to mix DNB gently using a wide-bore non-filtered pipette tip and it is strongly recommended to use 200 uL Wide Bore Tips with MGI brand.
 - Store DNB at 4 °C and perform sequencing within 48 hours.
- 9. For the next step, refer to Quantifying DNB on Page 25.

4.3.4 Making DNB of G99 SM FCL PE300

4.3.4.1 Preparing reagents for DNB making

Perform the following steps:

- 1. Place the library on ice until use.
- 2. Take out Make DNB Buffer, Low TE Buffer and Stop DNB Reaction Buffer from storage and thaw reagents at room temperature.
- 3. Thaw Make DNB High-efficiency Enzyme Mix V for approximately 0.5 hours on ice.
- 4. After thawing, mix reagents using a vortex mixer for 5 seconds. Centrifuge briefly and place on ice until use.

4.3.4.2 Calculating the required amount of ssDNA library

• The required volume of ssDNA libraries is determined by the required library amount (fmol) and library concentration quantified in *Library concentration* and amount requirement on Page 13.

Table 29 Required amount of ssDNA libraries

Library type	Volume (µL)
General libraries	V=30 fmol/C
PCR free libraries	V=37.5 fmol/C

 Calculate the required ssDNA libraries for each Make DNB reaction and fill it in Make DNB reaction mix 1 on Page 24 as V.

4.3.4.3 Making DNB

Perform the steps below:

1. Take out 0.2 mL PCR 8-tube strip or PCR tubes. Prepare Make DNB reaction mix 1 according to the table below for different library types.

• Keep Low TE Buffer on ice after use. It may be used for DNB dilution.

Table 30 Make DNB reaction mix 1

Component	Volume (µL)
Low TE Buffer	10-V
Make DNB Buffer	10
ssDNA libraries	V
Total volume	20

- 2. Mix the reaction mixture thoroughly by using a vortex mixer for 5 seconds, centrifuge for 5 seconds and place it on ice until use.
- 3. Place the mixture into a thermal cycler and start the primer hybridization reaction. Thermal cycler settings are shown following the table below:

Temperature	Time
Heated lid (105 °C)	On
95 ℃	1 min
65 °C	1 min
40 °C	1 min
4 °C	Hold

Table 31 Primer hybridization reaction conditions

- 4. Take out the Make DNB Enzyme Mix II (LC) from storage and place it on ice. Centrifuge briefly for 5 seconds and hold on ice.
 - Tips Do not place Make DNB Enzyme Mix II (LC) at room temperature.
 - Avoid holding the tube for a prolonged time.
- 5. Take the PCR tube out of the thermal cycler when the temperature reaches 4 $^{\circ}\mathrm{C}$.
- 6. Centrifuge briefly for 5 seconds, place the tube on ice and prepare the Make DNB reaction mix 2 following the table below:

Table 32 Make DNB reaction mix 2

Component	Volume (µL)
Make DNB High-efficiency Enzyme Mix V	20
Make DNB Enzyme Mix II (LC)	0.8
Total volume	20.8

- 7. Add all the Make DNB reaction mix 2 into the Make DNB reaction 1. Mix thoroughly by reagents using a vortex mixer for 5 seconds, centrifuge briefly and place the tubes into the thermal cycler for the next reaction. The conditions are shown following the table below:
 - Tips As some thermal cyclers are slow in temperature adjustment. When the heated lid is being heated or cooled, the sample block may remain at room temperature and the procedure is not performed. For these types of thermal cyclers, pre-heating of the heated lid is required to ensure the heated lid is at working temperature during the DNB reaction.
 - It is recommended to set the temperature of the heated lid to 35 $^{\circ}\mathrm{C}$ or the temperature closest to 35 $^{\circ}\mathrm{C}$.

Temperature	Time
Heated lid (35 °C)	On
30 ℃	30 min
4 °C	Hold

Table 33 RCR (Rolling circle replication) conditions

- Immediately add 10 μL Stop DNB Reaction Buffer once the temperature reaches 4 °C. Mix gently by pipetting 8 times using a wide-bore non-filtered pipette tip.
 - Tips Do not vortex, shake the tube or pipette vigorously.
 - It is very important to mix DNB gently using a wide-bore non-filtered pipette tip and it is strongly recommended to use 200 uL Wide Bore Tips with MGI brand.
 - Store DNB at 4 °C and perform sequencing within 48 hours.
- 9. For the next step, refer to Quantifying DNB on Page 25.

4.4 Quantifying DNB

Perform the steps below:

1. When DNB making is completed, take 2 μL of DNBs, and use the Qubit ssDNA Assay Kit and Qubit Fluorometer to quantify the DNBs. For details, refer to *Qubit ssDNA assay kit on Page 75.*

Table 34 DNB concentration standard

Model	DNB concentration
G99 SM FCL SE100/PE50	
G99 SM FCL PE150	
G99 SM APP-C FCL SE100	≥8 ng/µL
G99 SM APP-C FCL PE150	
G99 SM FCL SE400	
G99 SM FCL PE300	≥12 ng/µL

- Tips If there are too many samples in a single test, it is recommended to quantify in batches to avoid inaccurate DNB quantification due to fluorescence quenching.
 - If the concentration of libraries prepared by customers is lower than that specified in the table above, refer to *Low DNB concentration on Page 57.*
- 2. If the concentration exceeds 40 ng/ μ L, the DNBs should be diluted with Low TE Buffer according to the following table.

Table 35 Scheme for DNB concentration dilution

Model	DNB concentration after diluting
G99 SM FCL SE100/PE50	
G99 SM FCL PE150	
G99 SM APP-C FCL SE100	20 ng/µL
G99 SM APP-C FCL PE150	
G99 SM FCL SE400	
G99 SM FCL PE300	30 ng/µL

3. For the next step, refer to Loading DNBs by DL-G99 on Page 40.

Chapter 5 Preparing the flow cell

Perform the steps below:

1. Remove the flow cell box from the sequencing set.

2. Place the flow cell at room temperature for 0.5 to 24 hours.

- 3. Unwrap the outer plastic package before use.
 - Yips If the flow cell can not be used within 24 hours after being placed in room temperature and the outer plastics package is intact, the flow cell can be placed back in -25 ℃ to -15 ℃ for storage. But the switch between room temperature and -25 ℃ to -15 ℃ must not exceed 3 times.
 - If the outer plastic package has been opened but the flow cell is not used immediately, store the flow cell at room temperature and use within 24 hours. If 24 hours is exceeded, it is not recommended that you use the flow cell.

Figure 2 Unwrapping the outer package

- 4. Take the flow cell out of the inner package and inspect it to ensure that the flow cell is intact.
- 5. Clean the back of the flow cell by using a canned air duster.

Chapter 6 Preparing the sequencing reagent cartridge

- Follow steps 1 through 7 to prepare the Sequencing Reagent Cartridge for SE sequencing.
- Follow steps 1 through 10 to prepare the Sequencing Reagent Cartridge for PE sequencing.
- The MDA mixture (MDA, Multiple displacement amplification) needs to be added into MDA well if you perform PE sequencing. If prepared reagent cartridges are not used immediately, refer to *Reagent kit storage rules on Page 63*.

Perform the steps below:

- 1. Remove the Sequencing Reagent Cartridge from storage.
- 2. Thaw the cartridge in a water bath at room temperature or in a 2 °C to 8 °C refrigerator. The approximate time to thaw is listed in the following table. Store the cartridge in a 2 °C to 8 °C refrigerator until use.

	Method		
Model	Water bath at room temperature (hours)	Refrigerator at 2°C to 8°C overnight then water bath at room temperature (minutes)	Refrigerator at 2°C to 8°C (hours)
G99 SM FCL SE100/PE50	2.0	30	24.0
G99 SM FCL PE150	3.0	30	24.0
G99 SM App-C FCL SE100	2.0	30	24.0
G99 SM App-C FCL PE150	3.0	30	24.0
G99 SM FCL SE400	4.0	30	24.0
G99 SM FCL PE300	4.5	30	24.0

Table 36 Approximate thaw time for various models

- 3. Invert the cartridge 5 times to mix before use.
- 4. Wipe any water condensation on the cartridge cover and wells with a Kimwipes tissue.
- 5. Use the Puncher to pierce the M1, M2, M3, M4 wells of the cartridge with the pre-mixed reagents.

Figure 3 Piercing the M1, M2, M3, M4 wells of the Sequencing Reagent Cartridge

6. Shake the cartridge vigorously 20 times in an up-and-down motion and 20 times in a clockwise and counterclockwise direction. Ensure that reagents are fully mixed.

Tips Failure to mix adequately will affect the results of the experiment.

7. Pierce the seal of MDA well by using a clean 1 mL sterile pipette tip. The position of MDA well is on *Adding MDA mixture on Page 29.*

Tips The G99 SM FCL SE100/G99 SM App-C FCL SE100/G99 SM FCL SE400 Sequencing Reagent Cartridge is now ready for use. For the next step, refer to *Performing a sequencing run on Page 30*.

- 8. For PE sequencing, take out MDA Reagent from storage.
- 9. Add 125 μ L of MDA Enzyme Mix to the MDA Reagent tube with a 200 μ L pipette and invert the tube 6 times to mix the reagents.

Y Tips When using MDA Enzyme Mix, do not touch the tube wall. The heat from your hand can affect the enzyme activity.

- 10. Add all the mixture to MDA well.
 - Tips Transfer the mixture carefully to prevent the mixture from spilling out of the reagent tube.
 - The G99 SM FCL PE50/G99 SM FCL PE150/G99 SM App-C FCL PE150/G99 SM FCL PE300 Sequencing Reagent Cartridge now ready for use. For the next step, refer to *Performing a sequencing run on Page 21*.

Figure 4 Adding MDA mixture

Chapter 7 Performing a sequencing run

7.1 Checking before sequencing

Perform the steps below:

1. Select (x) in operation A according to your requirement. If both A and B are required, select 🖉 .

Figure 5 New sequence selection interface

2. The main interface is as below: The system automatically checks the Disk space, Sensor, Optical system and Incubation system one by one.

- Y Tips Ensure that the liquid level in the waste container is lower than the upper limit line. If not, empty the waste container.
 - If any part of this check fails, refer to An error occurs before washing on Page 64.

Figure 6 Check interface

3. After the check is completed, select Next.

7.2 Setting the sequencing parameters

Choose one of the following workflow types:

- Sequence Only: Testing general script.
- Sequence & Analysis: After general sequencing, upload data to the server for bioinformatic analysis.
- **BBS** (Bioanalysis By Sequencing): Test Barcode first, and then upload data to the specified node for bioinformatic analysis.

- **Tips** The settings of **Sequence & Analysis** and **BBS** can only be performed on DNBSEQ-G99ARS.
 - Ensure that the sequencing parameters are correct in this step. When the sequencing parameters are confirmed, they cannot be modified in subsequent steps.

For information on setting parameters, refer to:

- Setting sequence only parameters on Page 32.
- Setting sequence & analysis parameters on Page 34.
- Setting BBS parameters on Page 36.

7.2.1 Setting sequence only parameters

Perform the steps below:

1. Select **Sequence Only** workflow type, and **BBS** will default to No. Select the **DNB ID** box and enter the DNB ID using the on-screen keyboard.

Tips When naming a DNB ID, use only letters, numbers, "+", "-" and "_".

A Status Preparing	1	
1. Check 2. Set 3. L	oad cartridge 4. Load flow cell	5. Review 6. Sequence
Workflow type	O Sequence & Analysis	Sequence Only
BBS	O Yes	No
DNB ID	XXXXXXX	
Recipe		▼ ▼
Advanced settings	*	
Split Barcode	Yes	O No
Auto Wash	Yes	O No
Pre	Next	

Figure 7 Selecting a workflow type

2. Select the sequencing recipe from the **Recipe** list. There are one-click sequencing runs (for example, SE100+10) and a user-customized run (Customize).

Yips For Dual Barcode sequencing and other recipes(such as SE35, SE50, PE50, PE100 and so on) not in the recipe list, select **Customize** from the **Recipe** list. For information on customizing a recipe, refer to *Important interfaces* for customizing a run on Page 66.

1. Check 2. Set 3. L	.oad cartridge 4. Load flow cell	5. Review 6. Sequen
Workflow type	O Sequence & Analysis	Sequence Only
BBS	O Yes	No
DNB ID	XXXXXX	
Recipe		•
Advanced settings Split Barcode	SE100+10 SE150+10 PE100+10 PE150+10 SE10+10+400	O No
Auto Wash	SE10+400 PE300+10+10 PE300+10 Customize	O No

Figure 8 Selecting a sequencing recipe

3. Select a barcode range sequence from the list of barcode ranges next to the **Recipe** list.

A Status Preparing		
1. Check 2. Set 3. Load	cartridge 4. Load flow cell 5	. Review 6. Sequence
Workflow type	 Sequence & Analysis 	Sequence Only
BBS	O Yes	No
DNB ID	XXXXXX	
Recipe	PE150+10	1-128
Advanced settings 🛛 🗧		501-596 Others
Split Barcode	Yes	O No
Auto Wash 🔘	Yes	O No
Previ	ious Next 🕨	

Figure 9 Selecting a barcode range

4. In Advanced settings, select either **Yes** or **No** for **Split Barcode** and **Auto Wash**, according to your needs. Yes is the default for both settings.

A Status Preparing		
1. Check 2. Set 3. Loa	ad cartridge 4. Load flow cell	5. Review 6. Sequence
Workflow type	Sequence & Analysis	Sequence Only
BBS	O Yes	No
DNB ID	XXXXXXX	
Recipe	PE150+10	1-128
Advanced settings × Split Barcode Auto Wash	Yes	O No O No
Pre	evious Next	

Figure 10 Advanced settings

5. Select **Next**, and for the next step, refer to *Loading the reagent cartridge on Page 37.*

7.2.2 Setting sequence & analysis parameters

Perform the steps below:

1. Select Sequence & Analysis workflow type. Select No for BBS.

A Status Preparing		
1. Check 2. Set 3. Loa	ad cartridge 4. Load flow cell	5. Review 6. Sequence
Workflow type	Sequence & Analysis	 Sequence Only
BBS	O Yes	• No
DNB ID		
Recipe		
Advanced settings 🛛 🗧		
Split Barcode	Yes	O No
Auto Wash 🔘	Yes	O No
Prev	ious Next 🕨	

Figure 11 Sequence & Analysis workflow type

1. Check 2. Set 3.	Load cartridge 4. Load Flow cell	5. Review 6. Sequence
Workflow type	Sequence & Analysis	 Sequence Onl
BBS	O Yes	• No
DNB ID	XXXXXX	
Recipe		1-128
Advanced settings Split Barcode Auto Wash	SE100+10 SE150+10 PE100+10 PE150+10 SE10+10+400 SE10+10+400 PE300+10+10 PE300+10	O No O No

2. Select the **DNB ID** box and enter the DNB ID using the on-screen keyboard. Select the sequencing recipe from the **Recipe** list.

Figure 12 Entering DNB ID and selecting the sequencing recipe

For information on barcode sequence and advanced settings, refer to Selecting a barcode range on Page 33 and Advanced settings on Page 34.

3. Select **Next**, and for the next step, refer to *Loading the reagent cartridge on Page 37.*

7.2.3 Setting BBS parameters

Perform the steps below:

1. Select **Sequence & Analysis** workflow type. Select **Yes** for BBS and fill in the BBS box next to **Yes** for data analysis. For example, *10,110*, means that the data analysis will be performed at the 10th cycle of read1 and the 10th cycle of read2 for a BBS PE100 sequencing.

Status Prepari	ng	
1. Check 2. Set 3	. Load cartridge 4. Load flow cell	5. Review 6. Sequence
Workflow type	Sequence & Analysis	 Sequence Only
BBS	Yes 10.110	O No
DNB ID		
Recipe		•
Advanced settings	*	
Split Barcode	Yes	O No
Auto Wash	Yes	O No
■ F	Previous	•

Figure 13 Selecting BBS sequencing type

2. Select the **DNB ID** box and enter the DNB ID using the on-screen keyboard. Select a sequencing recipe from the **Recipe** list.

A Status Preparing		
1. Check 2. Set 3. Loa	d cartridge 4. Load flow cell 5.	Review 6. Sequence
Workflow type	Sequence & Analysis	 Sequence Only
BBS	Yes 10,110	O No
DNB ID	XXXXXXX	
Recipe	▼ BBS SE10+10+100	1-128
Advanced settings Split Barcode (a) Auto Wash (a)	BBS_PE10+10+100+100 BBS_PE10+100+100+10 BBS_PE10+150+150+10 BBS_PE10+10+150+150 BBS_PE10+100+100 BBS_SE10+10+400 BBS_SE10+400 Next ►	O No O No
Split Barcode (e) Auto Wash (e) Previ	BBS_PE10+10+150+150 BBS_PE10+100+100 BBS_SE10+10+400 BBS_SE10+400	O No

Figure 14 Entering DNB ID and selecting BBS recipe

For information on barcode range and advanced settings, refer to Selecting a barcode range on Page 33 and Advanced settings on Page 34.

3. Select **Next**, and for the next step, refer to *Loading the reagent cartridge on Page 37.*

7.3 Loading the reagent cartridge

Perform the steps below:

- 1. Slide the Sequencing Reagent Cartridge into the reagent compartment until it stops.
 - Tips If you perform App-C sequencing, select **Yes** for App-C. Otherwise, select **No**.

Figure 15 Loading the sequencing cartridge

The RFID (Radio Frequency Identification) scanner will automatically identify the sequencing cartridge ID.

Tips Enter the cartridge ID manually if the RFID scanner fails to recognize the ID.

Figure 16 Scanning Sequencing Reagent Cartridge ID

Sequencing Reagent Cartridge ID

Figure 17 Location of Sequencing Reagent Cartridge ID

- 2. Select Prime.
- 3. Select **Yes** to start priming. The priming process takes about 2 minutes. If pumping failure occurs during priming, contact Technical Support.

Priming	
	Priming

7.4 Loading DNBs by DL-G99

7.4.1 Preparing reagents

Perform the steps below:

- 1. Remove DNB Load Buffer II from storage and thaw the reagents on ice for approximately 30 minutes.
- 2. After thawing, mix the reagents using a vortex mixer for 5 seconds. Centrifuge briefly and place on ice until use.
 - **Tips** If crystal precipitation is found in DNB Load Buffer II, vigorously mix the reagent for 1 to 2 minutes using a vortex mixer to re-dissolve the precipitation before use.
- 3. Remove the Micro Tube 0.5 mL (Empty) from the sequencing set and add the following reagents:

Component	Volume (µL)
DNB Load Buffer II	7.0
Make DNB Enzyme Mix II (LC)	1.0
DNBs	21.0
Total Volume	29.0

Table 37 DNB loading mixture

4. Combine the components and mix by gently pipetting 8 times using a widebore, non-filtered pipette tip. Place the mixture at 4 °C until use.

Tips • Do not centrifuge, vortex, or shake the tube.

- Prepare a fresh DNB loading mixture immediately before the sequencing run.
- Each FCL requires 10 µL of DNB loading mixture.

7.4.2 Loading DNBs

Perform the steps below:

1. Hold the loader with one hand, and open the cover with the other hand.

Figure 19 Opening the cover

2. Place the flow cell into the loader, and ensure that the QR code is facing up. Close the cover.

Figure 20 Placing the flow cell

3. Place the loader on the laboratory bench with the back facing up.

Figure 21 Placing the loader with back facing up

4. Aspirate 10 µL of DNB loading mixture using a 200 µL non-filtered sharp tip, and vertically insert the tip into inlet A as shown in the following figure:
Tips Use a 200 µL non-filtered sharp tip but not a wide-bore tip in this loading method.

Outlet B

Figure 22 Inlet and outlet of loader

- 5. Fix the tip with one hand, press the tip ejector on the pipette to unload the tip with the other hand, and observe the liquid level in the tip:
 - If the liquid level drops automatically, the DNB loading mixture will automatically flow into the flow cell, skip step 6.
 - If the liquid level does not drop, continue to step 6.

• Do not rotate the tip or move the flow cell during the loading process.

Figure 23 Loading DNBs by using DL-G99

- 6. (Optional) If the liquid level does not drop, perform the following steps:
 - 1) Leave the tip with DNB loading mixture in inlet A.
 - 2) Pipette a new tip and adjust the aspirate volume to 2 μ L.
 - 3) Hold the new empty tip with one hand and gently insert it into outlet B while pressing the button down with the other hand.

4) Gently release the button and remove the tip after the liquid level of the tip at outlet A drops.

Figure 24 Loading DNBs by using DL-G99

- 7. After ensuring that the tip at inlet A is empty, remove the tip, and pipette $1 \mu L$ of DNB loading mixture into inlet A. Ensure that inlet A is full of liquid.
- 8. Turn the loader upside down, open the cover, remove the flow cell, and transfer it to the sequencer immediately.

7.5 Loading flow cell

Perform the following steps:

1. Insert the flow cell into the flow cell compartment after priming is finished. The RFID scanner will automatically recognize the flow cell ID.

Tips Enter the flow cell ID manually if the RFID scanner fails to recognize the ID.

Figure 25 Loading flow cell

Figure 26 Scanning flow cell ID

2. Select Next.

- Tips If the flow cell is not attached properly, use a canned air duster to blow the dust off the flow cell stage and the back of the flow cell. If there are crystals on the surface of the stage, wipe it gently with a damp Kimwipes tissue and then let it air-dry to ensure that the flow cell can be firmly attached to the stage.
 - Do not move the flow cell after it has been loaded. Otherwise, it may cause misalignment between the flow cell inlet and outlet and the gasket.

7.6 Reviewing parameters

To ensure sequencing quality, when sequencing of Read1 and Read2 is completed, the sequencer will automatically perform another cycle for calibration. For example, for PE150 sequencing, the length of read1 is 150, the length of read2 is 150, and the length of barcode is 10. Adding 1 correction cycle for Read1 and 1 correction cycle for Read2 (barcode does not need to be corrected), the total number of sequencing cycles is 312.

A Status Preparing	
1. Check 2 .Set 3. Load cartr	ridge 4. Load flow cell 5. Review 6. Sequence
Sequencing Information	
Workflow type	Sequence Only Auto Wash
BBS	No
DNB ID	
Read Length	Read1 Read2 Didalbarcode barcode 151 151 0 10
Barcode	1-128 split barcode
Cartridge ID	Flow cell ID
XXXXXXX	XXXXXX
Prev	ious 🖉 Sequence

Figure 27 Reviewing information

7.7 Starting sequencing

Perform the steps below:

1. After confirming that the information is correct on *Reviewing parameters on Page 45,* select **Sequence**, and select **Yes** in the pop-up dialog box to start sequencing.

Proceed with sequencing ?	
No Yes	

Figure 28 Confirming sequencing interface

- 2. When sequencing has started, the following interface will appear.
 - Tips Do not bump, move, vibrate, or impact the device during sequencing, as it may cause inaccurate sequencing results.
 - Pay special attention to the LED status bar or the on-screen instructions. If errors occur, troubleshoot the problem by following the instructions and this guide. If errors persist, contact Technical Support.

Figure 29 Sequencing interface

While real-time sequencing progress appears in the Sequencing interface, you can still operate the device if needed.

3. After sequencing finished, refer to *Performing a manual wash (~26 min) on Page 50* to perform step 1 to step 3.

7.8 Data access

For detailed information, please refer to *DNBSEQ-G99 Series Genetic* Sequencer Software Guide. After clicking to start sequencing, the sequencing results generated by the control software will appear in D drive.

- 1. The data folder named after the flow cell ID, mainly contains pictures and data generated during the instrument operation (such as metrics).
- 2. The Result folder named after the flow cell ID, mainly contains Bioinfo file and FASTQ file.

Chapter 8 Device Maintenance

8.1 Wash instruction

Two wash types are available, depending on sequencer conditions:

Wash type	Cartridge type	Process time (minutes)	Description
Automatic wash	Sequencing Reagent Cartridge	21	If Yes is selected in the advanced settings, the system will automatically perform the wash after each sequencing run.
Manual wash	Washing cartridge	26	 If the Auto Wash is not performed, a manual wash is required after sequencing. If the sequencer is to be powered off for more than 7 days, perform a manual wash before power off and after power on. If the sequencer has not been used for 7 days or longer after a manual wash, perform manual wash before use. Perform a manual wash when impurities are found in the flow cell. Perform a manual wash after replacing pipelines, sampling needles, or other accessories that have been exposed to the reagents. Under normal use, perform a manual wash every month.

Table 38 Wash types

8.2 Preparing for wash

8.2.1 Preparing washing reagents

Prepare the washing reagents according to information in the table below:

Reagent name	Volume (mL)	Final concentration
2 M NaOH	50	0.1 M
Laboratory-grade water	950	N/A
Total volume	1000	
Shelf life	1 month at 4°C	

Table 39 Washing reagent 3: 0.1M NaOH

8.2.2 Preparing washing cartridge

Tips Washing cartridge for manual wash can be ordered as needed (DNBSEQ-G99 Cleaning Reagent Kit. Catalog No. 940-000624-00)

• Pierce the seals of MDA well and NaOH well using a 1 mL sterile tip.

Figure 30 Position of MDA and NaOH wells

• Fill the washing cartridge with washing reagent according to the information in the following table below:

Well position	Washing reagent	Volume (mL)
NaOH well	Washing reagent: Washing reagent 3	7.5

Table 40 Reagents to be added to washing cartridge

8.2.3 Performing a wash

8.2.3.1 Sequencer automatic wash (~21 min)

If **Auto wash** is selected in setting sequence parameters, the sequencer will perform an automatic wash after sequencing is completed.

8.2.3.2 Performing a manual wash (~26 min)

- If the **Auto wash** is not selected in the setting sequencing parameters, perform step 1 to step 11.
- Perform step 4 to step 11 in other situations in *Wash types on Page 48* except when **Auto wash** is not selected in the setting sequencing parameters.
- A used sequencing reagent cartridge without doing automatic wash can be used for manual wash.

Perform the following steps:

1. Select **Finish** after sequencing is completed.

Figure 31 Sequencing completed interface

2. Remove the flow cell and Sequencing Reagent Cartridge after the auto-sliding screen moves up. Pour out the waste and clean the waste container, and then put the waste container into the waste compartment.

NOTE: Auto-sliding screen Do not touch to avoid pinchin	i s moving u ng hands
Remove cartridge	S
Remove flow cell	
Close waste compartment door	
Waste container in place	S
Waste level check passed	

Figure 32 Return home interface

3. Select Return home after all items are completed.

4. Select 🕥 .

A Status Idle	🛄 🔄 B Status Idle	
Wash Sequence	Sequence A&B Wash	Sequence

Figure 33 Main interface

- 5. Placing washing cartridge.
 - Tips A used sequencing reagent cartridge without doing automatic wash can be used for manual wash.
 - The system will automatically recognize the type of Cartridge for manual wash.

Α	Status Preparing			2
	1. Preparing	2. Wash		
			_	
	Cartridge in place	Load waste container		
	Cartridge type O Was	shing cartridge 🛛 Sequencing ca	rtridge	
	Previous	🍚 Wash		
	Cartridg	e in place 🛛 🔊		

Figure 34 Placing washing cartridge

- 6. (Optional) Check the waste container.
 - Tips If the waste container is in place and the waste level is under the limit, skip this step.
 - If the waste container is not in place or the waste level is over the limit, the waste container door will automatically pop open. Pour out the waste and clean the waste container. Then put the waste container into the waste compartment and close the waste compartment door.

Α	Status Preparing			<u>.</u>
	1. Preparing	2. Wash		
			-	
	Cartridge in place	Load waste container		
	Cartridge type	cartridge O Sequencing cart	ridge	
	Previous	🍚 Wash		

Figure 35 Check waste container

7. Select Wash.

Α	Status Preparing		2
	1. Preparing 2. Wash		
		_	
	Cartridge in place		
	Cartridge type	rtridge	
	Previous Wash		

Figure 36 Check completed

8. Select Yes to start washing.

Figure 37 Confirming washing interface(using washing cartridge)

Confirming interface: a used sequencing reagent cartridge for manual wash

	!)
Proceed with Ensure that you have sele	th washing ? acted Sequencing cartridge!
No	Yes

9. Select **Finish** after washing is completed.

Figure 39 Washing completed interface

10. Remove the washing cartridge. Pour out the waste and clean the waste container, and then put the waste container into the waste compartment.

Auto-sliding screen is mov	ed up
Remove cartridge	
Waste level check passed	
Waste container in place	\checkmark
Close waste compartment door	\checkmark
Return home	

Figure 40 Removing washing cartridge

11. Select Return home.

Chapter 9 Troubleshooting

9.1 Low DNB concentration

When DNB concentration is lower than 8 ng/ μ L, try the steps below:

- Check if the kit has expired.
- Check if the library meets the requirements.
- Make a new DNB preparation. You can order DNBSEQ DNB Make Reagent Kit (Catalog No. 1000016115) to make new DNBs. If DNB concentration still does not meet the requirements after a new sample preparation, please contact technical support.

9.2 For PE sequencing run, forgot to add reagent into MDA well

MDA Enzyme is required to make the second strand template for PE sequencing. When preparing the Sequencing Reagent Cartridge, the appropriate amounts of MDA Enzyme Mix and MDA Reagent need be added to MDA well. If you forgot to add the reagent into MDA well when performing the sequencing run, this can be resolved by performing the following steps, as long as the sequencing run is at the read1 sequencing phase.

If you want to resume a stopped sequencing run, only the run that was stopped during read1, read2 or barcode sequencing phase can be resumed.

Y Tips A sequencing reagent cartridge can only be resumed once.

- If you forgot to add reagent into MDA well for PE sequencing run, perform step 1 to step 5.
- If you want to resume a stopped sequencing run, perform step 2, step 4, and step 5.

Perform the following steps:

1. Stop the run: select **I** at any sequencing cycle within read1, and select **Yes** when you are prompted as shown below:

Tips This DNB Make Reagent Kit is only suitable for G99 SM FCL SE100/PE50 and G99 SM FCL PE150 sequencing.

Figure 41 Selecting the sequencing stage to stop

Figure 42 Confirming to stop the run

2. Remove the Sequencing Reagent Cartridge and Flow Cell: Select **Finish**. When the sequencing run is stopped, remove the Sequencing Reagent Cartridge and Flow Cell after the reagent compartment door slides up. Finally, select **Return home** as shown below:

Figure 43 Selecting Finish

Figure 44 Removing Sequencing Reagent Cartridge and flow cell

Figure 45 Selecting Return home

3. Add MDA mixture to the Sequencing Reagent Cartridge: Add 125 μ L of MDA Enzyme Mix to the MDA Reagent tube with a 200 μ L pipette. Mix well and transfer all mixture into MDA well.

Figure 46 Adding MDA mixture

4. Check before resume sequence: select $(\breve{\aleph})$, then select (+) and the system will perform checking before resume sequence. Select **Next** after the check has completed.

Figure 48 Resume sequence interface

Figure 49 Checking completed

5. Resume sequence: Put the Sequencing Reagent Cartridge back to the sequencer and select **Prime** to perform priming. After priming is completed, insert the Flow Cell and select **Next** and confirm that all information is correct, select **Sequence** to resume the sequencing run as shown below:

Figure 50 Placing cartridge

Figure 51 Placing flow cell

Figure 52 Confirming information

Figure 53 Starting resuming sequencing

9.3 Reagent kit storage rules

- If a cartridge has been thawed without pressing M1, M2, M3, M4 wells and cannot be used within 24 hours, the cartridge can be frozen and thawed at most one additional time. Or, store the cartridge at 4 °C, and use it within 24 hours. Mix the reagents in the cartridge following the instructions in *Preparing* the sequencing reagent cartridge on Page 27 before use.
- If the reagents of M1, M2 and M3, M4 have been added into the cartridge (the cartridge has been prepared but cannot be used immediately), store it at 4 °C and use it within 24 hours. Mix the reagents in the cartridge following instruction in *Preparing the sequencing reagent cartridge on Page 27* before use.

9.4 An error occurs before washing

Perform the following steps:

1. If an error message occurs after selecting wash, select **Confirm**.

Figure 54 Error message

2. Select (a), if the following alarm appears, perform the step 3.

Figure 55 Error alarm

Alarm Inform	nation		
Level	Time 🕈	Position	Description
• Error	XX/XX/20XX XX:XX:XX XX	А	11603(A flow cell in place)
• Error	XX/XX/20XX XX:XX:XX XX	А	11602(A Sequencing cartridge in place)
		X Close	

Figure 56 Alarm information

3. Select **Close** to close alarm information. Select (III) > **Maintenance** > **Tools**. Select **Auto-sliding screen** and **Screen Up**, then remove the Sequencing Reagent Cartridge and Flow Cell.

Figure 57 Maintenance menu

Check	Auto-sliding screen	Waste compartment door	Verify stage flatness	
			I	
		📇 Screen Up		
		🖪 Maintenance		
		🖪 Screen Down		

Figure 58 Maintenance operation interface

4. Select Close.

9.5 Abnormal negative pressure appears during flow cell attachment

When the negative pressure appears in yellow, the negative pressure is abnormal, try the steps below:

1. Gently wipe the stage surface of flow cell stage with a damp Kimwipes tissue or a low-lint cloth and blow the stage using a canned air duster and ensure that no dust is present.

- 2. Blow the back of the flow cell using a canned air duster to ensure no dust is present.
- 3. If the problem persists, contact Technical Support.

9.6 Impurities appear in the original sequencing image

If impurities appear, try the steps below:

- 1. Moisten a Kimwipes tissue with 75% ethanol and use it to wipe the flow cell stage, and perform a maintenance wash on the sequencer according to *Performing a manual wash (~26 min) on Page 50.*
- 2. If the problem persists after a full wash, contact Technical Support.

Chapter 10 Important interfaces for customizing a run

This section describes how to customize a sequencing run in the following situations:

- When read length(s) in Read1 and/or Read2 are not the same as those predefined in the **Recipe** list.
- When barcode length(s) in Barcode and/or DualBarcode are not the same as those predefined in the **Recipe** list.
- The recipe you want is not within the predefined recipe list.
- Dark reaction cycles are required in Read1 and/or Read2 sequencing.
10.1 Customize a recipe interface

In the main interface, select **Sequence**. The **Customize** recipe is displayed:

A Status Preparing		m 😢
1. Check 2. Set 3. Load	d cartridge 4. Load flow cell	5. Review 6. Sequence
Workflow type	O Sequence & Analysis	Sequence Only
BBS	O Yes) No
DNB ID	XXXXXXX	
Recipe	▼ SE100+10	
Advanced settings	SE150+10 PF100+10	
Split Barcode Auto Wash	PE150+10	O No O No
Previo	ous Next	

Figure 59 Customize recipe

10.2 Customize interface

After you select **Customize** from the **Recipe** list, the Customize interface is displayed:

	Create Recipe	
1 —	Recipe name	_
2 —	Read1 Read2 Dualbarcode Barcode	— 5 — 4
3 —	Read1 Dark reaction cycles Read2 Dark reaction cycles Dark reaction	
	Back Save	

Figure 60 Customize interface

No.	Item	Description
1	Recipe name	Write a name for a sequencing run
2	Read1/Read2	Customize read1 and (or) read2 length for a sequencing run
3	Read1 dark reaction cycle/ Read2 dark reaction cycle	Customize dark reaction range in Read1 and (or) Read2
4	Barcode	Customize Barcode length for a sequencing run.
5	Dualbarcode	Customize DualBarcode length for a sequencing run.

The following table describes the function of buttons and areas in the interface:

10.3 Barcode (not predefined) interface

If you want to perform sequencing without using a predefined barcodes list, perform the following steps:

1. Select **Others** from the barcode range list next to the first **Recipe** box.

A Status Preparing		
1. Check 2. Set 3. Load	d cartridge 4. Load flow cell	5. Review 6. Sequence
Workflow type	O Sequence & Analysis	Sequence Only
BBS	O Yes	No
DNB ID	XXXXXXX	
Recipe	PE150+10+10	▼
Advanced settings &) Yes	1-128 501-596
Auto Wash @) Yes	barcode Others
Prev	ious Next 🕽	>

Figure 61 Selecting Others

A Status Preparing		
1. Check 2. Set 3. Loa	d cartridge 4. Load flow cell	5. Review 6. Sequence
Workflow type	O Sequence & Analysis	Sequence Only
BBS	O Yes	No
DNB ID	XXXXXX	
Recipe	PE150+10+10	Others 🔻
Barcode file		
Advanced settings	4	
Split Barcode	Yes	O No
Auto Wash	Yes	O No
Prev	vious	

2. Select in next to the **Barcode file**.

Figure 62 Configuring customize settings

3. Select the barcode file previously imported.

10.4 Examples of customized run

Tips Ensure that you are aware of the following information:

- Before starting the customizing run, confirm that the customized barcode files are already imported into the sequencer.
- Ensure that the total number of sequencing cycles including Read1, Read2, Barcode, Dualbarcode, and Dark Cycle is less than the maximum sequencing cycles for a given sequencing set as defined in *FCL Sequencing time and analysis time for each read length (hours) on Page 2.*
- The maximum read length for both Read1 and Read2 should not be more than that specified in the sequencing set. For example, if PE150 is used, the maximum customized read1 length and read2 length should not be greater than 150.
- When you perform dual barcode sequencing run, it is recommended that you use identical settings for the sequencing parameters in both side-A and side-B.
- Dark reaction cycle: A sequencing cycle in which the chemical reaction is performed, but with no imaging. Therefore, the output FASTQ file will not contain the dark cycle information. For example, for FCL PE150 sequencing, if cycle 2-10 for Read1 are dark cycles, the total cycles in the FASTQ file for Read1 is 141.
- The total lengths of barcode and dualbarcode should not be greater than 20.

You can refer to the following setting examples for your customized run.

10.4.1 Read1/Read2 lengths are not the same as those predefined in the Recipe list

- Sequencing run: PE120+140+10
- Length of read1: 120
- Length of read2: 140
- Length of barcode: 10
- Length of Dualbarcode: 0
- Split barcode: Yes
- Total cycles = 120+140+10+2 = 272
- Select a PE150 set

A Status Preparing		iii 🖄
1. Check 2. Set 3. Loa	d cartridge 4. Load flow cell !	5. Review 5. Sequence
Workflow type	O Sequence & Analysis 🧕) Sequence Only
BBS	O Yes) No
DNB ID	XXXXXXX	
Recipe	▼ PE150+10+10	•
Advanced settings Split Barcode	PE150 PE100+10+10dark PE100+10+10dark	O No
Auto Wash	PE150+10+10+dark Customize	O No
Prev	ious Next 🕨	

The	Customize	interface	is	set as	follows:	

Create Recip	e
Recipe name	PE120+140+10
Read length	Read1 Read2 Dualbarcode Barcode 120 140 0 10
Dark reaction	Read1 Dark reaction cycles Read2 Dark reaction cycles

Figure 63 Selecting Customize

Figure 65 Selecting PE120+140+10

Figure 64 Configuring customize settings for example 1

1. Check 2. Set 3.	Load cartridge	4. Load flow cell 5.	Review 5.	Sequenci
Workflow type	O Sequenc	e & Analysis 🛛 🔘	Sequenc	e Only
BBS	O Yes	۲	No	
DNB ID	XXXXXXXX			
Recipe	PE120+140	+10 🔻 1	-128	•
Advanced settings	¥			
Split Barcode	Yes		0 1	١o
	A Yes		0	No.

Figure 66 Selecting barcode type and split strategy for example 1

10.4.2 Length of the single barcode is not 10

- Sequencing run: PE150+8
- Length of read1: 150
- Length of read2: 150
- Length of barcode: 8
- Length of Dualbarcode: 0
- Split barcode: Yes
- Total cycles = 150+150+8+2 = 310

• Select a PE150 set

The Customize interface is set as follows:

1. Check 2. Set 3. Lo	ad cartridge 4. Load flow cell	5. Review 6. Sequence
Workflow type	O Sequence & Analysis	Sequence Only
BBS	O Yes	No
DNB ID	XXXXXXX	
Recipe		▼ ▼
	PE150+10+10	
Advanced settings	PE150	
	PE100+10+10dark	
Split Barcode	PE100+10+10dark	O No
Auto Wash	PE150+10+10+dark	O No
	Customize	1

Create Recip	De			
Recipe name	PE150+8			
Read length	Read1 150	Read2	Dualbarcode	Barcode 8
Dark reaction	Read1 Dark read	tion cycles	Read2 Dark re	eaction cycles

Figure 67 Selecting Customize

1. Check 2. Set 3. Lo	ad cartridge 4. Load flow cell	5. Review 6. Sequ
Workflow type	O Sequence & Analysis	Sequence On
BBS	O Yes	No
DNB ID	XXXXXXX	
Recipe	PE150+10+10	•
Advanced settings Split Barcode	PE150 PE100+10+10dark PE100+10+10dark	O No
Auto Wash	PE150+8 Customize	O No

Figure 69 Selecting PE150+8

Figure 68 Configuring customize settings for example 2

A Status Preparing		0
1. Check 2. Set 3. Los	ad cartridge 4. Load flow cell	5. Review 6. Sequence
Workflow type	O Sequence & Analysis	Sequence Only
BBS	O Yes	No
DNB ID	XXXXXXX	
Recipe	PE150+8	barcode V
Advanced settings	*	
Split Barcode) Yes	O No
Auto Wash) Yes	O No
Pre	vious	•

Figure 70 Selecting barcode type and split strategy for example 2

10.4.3 A dual barcode sequencing run

- Sequencing run: PE150+8+10
- Length of read1: 150
- Length of read2: 150
- Length of barcode: 10
- Length of Dualbarcode: 8
- Split barcode: Yes

- Total cycles = 150+150+8+10+2 = 320
- Select a PE150 set

The Customize interface is set as follows:

1. Check 2. Set 3. L	oad cartridge 4. Load flow cell	5. Review 6. Sequence
Workflow type	O Sequence & Analysis	 Sequence Only
BBS	O Yes	No
DNB ID	XXXXXXX	
Recipe		•
	PE150+10+10	
Advanced settings	PE150	
Advanced settings	PE100+10+10dark	
Split Barcode	PE100+10+10dark	O No
Auto Wash	PE150+10+10+dark	O No
	Customize	

Create Recip	De
Recipe name	PE150+8+10
Read length	Read1Read2DualbarcodeBarcode150150810
Dark reaction	Read1 Dark reaction cycles Read2 Dark reaction cycles

Figure 71 Selecting Customize

1. Check 2. Set 3. L	oad cartridge 4. Load flow cell	5. Review 5. Sequence
Workflow type	O Sequence & Analysis	Sequence Only
BBS	O Yes	No
DNB ID	XXXXXXX	
Recipe		7
	PE150+10+10	
	PE150	
Advanced settings	PE100+10+10dark	
Split Barcode	PE100+10+10dark	O No
Auto Wash	PE150+8+10	O No
	Customize	- 0

Figure 72 Configuring customize settings for example 3

A Status Preparing		
1. Check 2. Set 3. Los	d cartridge 4. Load flow cell	5. Review 6. Sequence
Workflow type	O Sequence & Analysis	Sequence Only
BBS	O Yes	No
DNB ID	XXXXXXX	
Recipe	PE150+8+10	barcode 🔻
Advanced settings	\$	
Split Barcode	Yes	O No
Auto Wash) Yes	O No
Pre	vious	

Figure 74 Selecting barcode type and split strategy for example 3

These parameters can be set in both sides. It is recommended that you use identical settings for the sequencing parameters in both sides.

10.4.4 Dark reaction cycles are required in read1 and/or read2 sequencing

- Sequencing run: PE150+8+8
- Length of read1: 150

- Length of read2: 150
- Length of barcode: 8
- Length of Dualbarcode: 8
- Dark cycles: From cycle-2 to cycle-10, cycle-22 to cycle-30 in read1 and cycle-16 to cycle-20, cycle-30 to cycle-40 in read2.
- Total cycles = 150+150+8+8 +2 = 318
- Select a PE150 set

The Customize interface is set as follows:

1. Check 2. Set 3. L	.oad cartridge 4. Load flow cell	5. Review	6. Sequ
Workflow type	O Sequence & Analysis	Seque	nce Or
BBS	O Yes	No	
DNB ID	XXXXXXX		
Recipe		•	
	PE150+10+10		
Advanced settings	PE150		
Advanced settings	PE100+10+10dark		
Split Barcode	PE100+10+10dark	0	No
Auto Wash	PE150+10+10+dark	0	No
	Customize		

Create Recip	iê	
Recipe name	PE150+8+8DR	
Read length	Read1 Read2	Dualbarcode Barcode
<u>-</u>	Read1 Dark reaction cycles	Read2 Dark reaction cycles
Dark reaction	2-10.22-30	16-20,30-40

Figure 75 Selecting Customize

1. Check 2. Set 3.	Load cartridge 4. Load flow cell	5. Revie	w 6. Seque
Workflow type	O Sequence & Analysis	Sec	juence Onl [,]
BBS	O Yes	No	
DNB ID	XXXXXXX		
Recipe		r	▼
	PE150+10+10		
Advanced settings	PE150		
Advanced settings	PE100+10+10dark		
Split Barcode	PE150+8+8DR		O No
Auto Wash	PE150+8+10		O No
	Customize		

Figure 77 Selecting PE150+8+8DR

Figure 76 Configuring customize settings for example 4

A Status Preparing		
1. Check 2. Set 3. Load	cartridge 4. Load flow cell	5. Review 6. Sequence
Workflow type	O Sequence & Analysis	Sequence Only
BBS	O Yes	No
DNB ID	XXXXXXX	
Recipe	PE150+8+8DR	barcode 🔻
Advanced settings 🛛 🗧		
Split Barcode 💿	Yes	O No
Auto Wash 🔘	Yes	O No
Prev	ious	

Figure 78 Selecting barcode type and split strategy for example 4

Appendix 1 Qubit ssDNA assay kit

Tips • Working solution should be used within 0.5 hours after preparation.

- Avoid touching the wall of tapered detection tubes.
- No Bubbles in detection tubes.

Perform the steps below:

1. Prepare the Qubit working solution by diluting the Qubit ssDNA Reagent 1:200 in Qubit ssDNA Buffer. Use a clean plastic tube each time you prepare Qubit working solution. Do not mix the working solution in a glass container.

Y Tips The final volume in each tube must be 200 µL. Each standard tube requires 190 μ L of Qubit working solution, and each sample tube requires anywhere from 180 - 199 µL.

Prepare sufficient Qubit working solution to accommodate all standards and samples.

For example, for 8 samples, prepare enough working solution for the samples and 2 standards: ~ 200 µL per tube in 10 tubes yields 2 mL of working solution (10 µL of Qubit reagent plus 1990 µL of Qubit Buffer).

- 2. Add 190 µL of Qubit working solution to each of the tubes used for standards.
- 3. Add 10 μ L of each Qubit standard to the appropriate tube, then mix by vortexing 3 to 5 seconds. Be careful not to create bubbles.
- 4. Set up the required number of 0.5-mL tubes for standards and samples. The Qubit ssDNA Assay requires 2 standards.
- Tips Use only thin-wall, clear, 0.5-mL PCR tubes. Acceptable tubes include Qubit assay tubes (Cat. No. Q32856) or Axygen PCR-05-C tubes (Part No. 10011-830).
 - Number of Oubit test tubes needed are the number of samples plus 2 standards tubes. For example, if you have 3 samples, you will need 5 tubes.
- 5. Label the tube lids. Do not label the side of tube.
- 6. Prepare the solutions used for standards and sample tests according to the table below.

1	S1 (µ L)	S2 (µ L)	D1 (µ L)	D2 (μ L)	D3 (µ L)
Working solution	190	190	198	198	198
S1 (0 ng/µL)	10	/	/	/	/
S2 (20 ng/µL)	/	10	/	/	/
Sample (µL)	/	/	2	2	2
Total volume	200	200	200	200	200

Label the tube lids.

- 7. Mix tubes by using a vortex mixer, centrifuge briefly for 5 seconds, then incubate at room temperature for 2 minutes.
- 8. Proceed instructions in section "Reading standards and samples" of relevant Qubit user guide; follow the procedure appropriate for your instrument.

Appendix 2 Manufacturer

Manufacturer	Wuhan MGI Tech Co., Ltd.
Address	Building B13, No.818, Gaoxin Avenue, East Lake High-Tech Development Zone, 430075, Wuhan, P.R.China
	Building 24, Stage 3.1, BioLake Accelerator, No.388, 2nd Gaoxin Road, East Lake High-Tech Development Zone, 430075, Wuhan, P.R.China
E-mail	MGI-service@mgi-tech.com
Website	www.mgi-tech.com