MGI

Evaluation of MGI's MTB-Explorer Software using Whole-Genome Sequencing Data of Isolated Pure Culture of Mycobacterium tuberculosis on DNBSEQ-G99RS Platform

Highlights

Ultra-Fast Workflow

The workflow is combined with MGI's ultra-fast sequencer DNBSEQ-G99ARS, and thus report can be released within 24hrs including extraction of gDNA, library preparation using MGIEasy Fast FS DNA Library Prep Set followed by sequencing, and analysis by MTB-Explorer Software(hereinafter called MTBDR).

Excellent data quality

MGI's proprietary DNBSEQTM sequencing technology generates high-quality sequencing data for downstream analysis. MGI's proprietary DNBSEQTM technology is based on DNA nanoballs and works by generating multiple copies of the same circular template using rolling circle amplification. Further, DNA nanoballs are generated in a tube out of the flow cells. before loading into patterned flow cells, which prevents issues with optical duplicates or ExAmp duplicates observed in other sequencing platform utilizing cluster generation approach inside the flow cells.

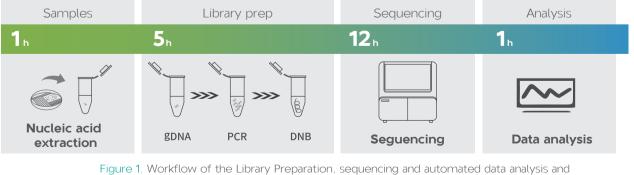
High degree of automation of library construction and data analysis

Combined with MGI's liquid handling systems such as MGISP-100RS automated library preparation system. library construction can be fully automated library preparation. Following sequencing on DNBSEQ-G99ARS the data analysis and reporting is also fully automated by MTB-Explorer Software that is integrated into bioinformatics module of DNBSEQ-G99ARS platform.

Complete analysis function

The MGI's proprietary developed software.**MTB-Explorer Software**, cater fully automated data analysis and reporting functions including genome assembly. typing identification. drug resistance prediction, and evolutionary traceability analysis of individual strains of *Mycobacterium tuberculosis*.

Introduction


Tuberculosis (TB) is an infectious disease that causes morbidity and mortality globally. especially in poor resource settings. Inappropriate use of antibiotics in treatment of drug susceptible TB patients. sub-optimal treatment regimens and failure to complete treatment in drug susceptible TB patients leads to drug resistance. Hence, drug-resistant tuberculosis (TB) is an emerging health problem and becoming a very serious obstacle for global TB control programmes. TB patients with drug resistance may be induced by exposure to multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB) strains. Multidrug-resistant TB (MDR-TB), caused by Mycobacterium tuberculosis complex strains (MTBC) that are resistant to at least isoniazid and rifampicin, has become a great threat in many parts of the world [1-3]. Controlling the high prevalence of drug-resistant TB largely depends on a timely laboratory diagnosis with novel methods such as NGS, because traditional TB drug susceptibility testing (DST) relies on solid or liquid culture, which may take weeks or months to yield results. Few molecular tastings for predicting single common anti-TB drugs are being used globally, but sensitivity and specificity reported for predicting multi-drug resistance is very low. Hence, Whole-genome sequencing (WGS), as a molecular diagnostic tool, has been greatly developed in TB research for the prediction of MDR and XDR with high sensitivity and specificity. Based on the independently developed reagents, automated sample preparation system.

To cater the ultra-fast WGS and reporting of Multi-Drug Resistance Prediction of TB specimens. MGI has developed a software.MTB-Explorer Software, that is integrated into bioinformatics module of DNBSEQ-G99ARS platform. Thus, the total workflow starting from extraction of gDNA, automated library construction by MGISP-100RS, sequencing by ultra-fast DNBSEQ-G99ARS and fully automated data analysis and reporting functions including genome assembly, typing identification, drug resistance prediction, and evolutionary traceability analysis of individual strains of Mycobacterium tuberculosis could be done within 24hrs.

Hence, this experiment has been designed to evaluate the performance of DNBSEQ-G99ARS sequencing platform for rapid and accurate sequencing, and fully automated data analysis and reporting by integrated MTB-Explorer Software for the precise identification, monitoring and early warning, traceability analysis, and precise prevention and control of tuberculosis infection.

Methods

The detailed depiction of the library preparation with MGIEasy Fast FS DNA Library Prep Set to prepare ready-to-sequence libraries using the Isolated Pure Culture of Mycobacterium tuberculosis. starting from sample to sequencing and data analysis with reporting can be found in Figure 1.

Workflow

Sample information

Sixteen of pure Mycobacterium tuberculosis culture samples with rifampicin resistance from National Drug Reference Standards have been used in this evaluation (The information of the reference strains can be found at http://aoc.nifdc.org.cn/sell/home/search.html).

Whole-Genome Library Preparation

The ready to sequence DNA libraries of the sixteen samples were prepared using MGIEasy Fast FS DNA Library Prep Set according to the manufacturer's instructions. The quality of gDNA was determined spectrophotometrically using a Nanodrop One (Thermo Fisher Scientific, Waltham MA, USA). All libraries were quantified with the Qubit dsDNA BR Assay Kit using Qubit 3.0 Fluorometer (Invitrogen, Carlsbad, CA, USA), library size was analyzed by Agilent 2100 Bioanalyzer Instrument.

Sequencing and data QC

Final libraries were sequenced in Paired-end 2x150 bp mode on the DNBSEQ-G99ARS (Figure 1) system using DNBSEQ-G99RS High-throughput Sequencing Set (G99 SM FCL PE150). DNBSEQ-G99ARS is one of the fastest models among small and medium throughput sequencers worldwide, capable of completing PE150 sequencing within 12 hours. It is equipped with a built-in computing module to achieve data analysis integration. The data output targeted per sample is 5M reads and recommended sequencing parameters of MTB WGS on DNBSEQ-G99RS is mentioned in Table 1.

Intended use	Recommended read length	Single sample reads	Throughput/FC
Whole-genome sequencing of Mycobacterium tuberculosis	PE150	5 M	16 samples

Table 1. Recommended sequencing parameters of MTb WGS on DNBSEQ-G99RS

The total data output was 102.15M reads and \geq 92.55% of bases were having \geq Q30 score indicating that the data output and sequencing data quality were excellent.

Overview of analysis results

Following the sequencing, demultiplexing of the cal files was done by instrument control software of the DNBSEQ-G99ARS. Further data analysis including data QC/genome assembly and prediction of drug resistance etc. was performed by MTB-Explorer Software. The MTB-Explorer Software is an analysis software specifically designed for the analysis of data of Mycobacterium tuberculosis. It is integrated into bioinformatics module of DNBSEQ-G99ARS platform and can perform automated analysis functions such as genome assembly, type and spoligotype identification, drug resistance prediction, systematic evolutionary analysis of M. tuberculosis, and automatically generate analysis results/reports.

MTB-Explorer Software automatically initiated the analysis of the raw sequencing data using the fastq files generated by instrument control software of the DNBSEQ-G99ARS instrument control software of the DNBSEQ-G99ARS and generated a report after the completion of all analysis functions mentioned above. Rifampicin (RIF) resistance were identified in all sixteen samples included in this evaluation.

Here the results of Sample 1 were demonstrated as an example. The Rifampicin (RIF) and isoniazid (INH) resistances were identified in Sample 1 and the associated mutation information were shown in Table 2.

Table 2. Drug resistance and mutation information associated with resistance in Sample 1 (Strain number: CMCC 94002):

V	ariants a	associated v	vith res	istanc	e in Sample	1 (Strain r	number: CMCC	94002)				
Variant (common _name)	Gene	Genome Position	Ref nt	Alt nt	Codon change	Amino Acid change	Number of reads for the position (coverage)	Variant frequency (%)	Variant Depth	Drug	WHO Confidence	Refer- ence
rpoB_ S450L	rpoB	761155	С	т	c.1349C>T	p.Ser 450Leu	147	100	147	RIF	Assoc w R	WHO 2021
rpsL_ K43R	rpsL	781687	А	G	c.128A>G	p.Lys 43Arg	148	100	148	STM	Assoc w R	WHO 2021
nhA_c-777t fabG1_c-15t)	fabG1	1673425	С	т	c15C>T	NA	153	100	153	ETH	Assoc w R	WHO 2021
nhA_c-777t fabG1_c-15t)	fabG1	1673425	С	т	c15C>T	NA	153	100	153	INH	Assoc w R	WHO 2021
pncA_ V130G	pncA	2288853	А	С	c.389T>G	p.Val 130Gly	147	100	147	PZA	Assoc w R	WHO 2021
embB_ M306V	embB	4247429	А	G	c.916A>G	p.Met 306Val	123	100	123	EMB	Assoc w R	WHO 2021

The report overview was presented in a graphical format, as shown in Figure 2. The title at the top represents the name and lineage of the sample. The colored outer ring represents the number of variations related to anti-tuberculosis drug resistance of 13 WHO endorsed anti-tuberculosis drugs that are included in the WHO catalogue database: The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance [4]. The gray inner ring represents the number of corresponding drug resistance gene variations detected in sample 1. Sample 1 was predicted to be resistant to rifampicin and isoniazid, and a total of 5 variations related to drug resistance were detected.

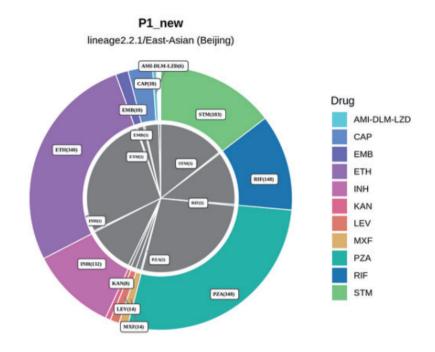


Figure 2. Overview of analysis results (Sample 1) indicating that sample 1 was predicted to be resistant to rifampicin and isoniazid, and a total of 5 variations related to drug resistance were detected.

Lineage identification typing

Spoligotyping is currently one of the most frequently used approaches for studying the phylogeography of Mycobacterium tuberculosis Complex. Given the binary format of the data, the spoligotyping results can easily be interpreted by MTB-Explorer Software. Spoligotyping was performed to identify the lineages of the sixteen isolates used in this study. Taking sample 1 as an example, the serotype and spoligotype of the sample were identified by typing and these results were shown in Figure 3. The clade identified is from East-Asian which is accurately predicted.

			Lineage		Percentage	
P1_	new	lineage2.2.1	East-A	Asian (Beijing)	99.73%	
5.2 Spoligoty	/pe					
Sample		Binary		Octal	Clade	SIT

Figure 2. Typing identification results demonstrating that the sample 1 lineage is from East-Asian (Beijing) clade.

Mutation and drug resistance prediction

Based on the WHO catalogue database (The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance [4]) released by WHO in 2021, the drug-resistant mutations of the sixteen samples were annotated and classified into two categories: "Variants associated with resistance" and "Variants not associated with resistance or uncertain significance". realizing the drug resistance prediction. Taking sample 1 as an example, the drug-resistant associated mutations were shown in Table 2. Here the results of are shown in Figure 4 and Table 3.

5. Summary of variants				
Total number of variants	Number of mutations in WHO ca talogue	Number of drug resistance assoc iated variants	Number of drug resistance unass ociated and uncertain significanc e variants	Number of other mutations
1719	26	5	21	1693

Variant (co mmon_nam e)	Gene	Genome P osition	Ref nt	Alt nt	Codon cha nge	Amino Aci d change	Number of reads for t he positio n (coverag e)	Variant fre quency (%)	Variant De pth	Drug	WHO Conf idence	Reference
rpo8_\$450L	rpoB	761155	с	т	c.1349C>T	p.Ser450	147	100.00	147	RIF	Assoc w R	WHO 2021
rpsl_K43R	rpsl.	781687	A	G	c.128AoG	p.Lys43Arg	148	100.00	148	STM	Assoc w R	WHO 2021
inhA_c-77	fabG1	1673425	с	т	c15C>T	NA	153	100.00	153	ETH	Assoc w R	WHO 2021
inhA_c-77	fabG1	1673425	с	т	c15C>T	NA	153	100.00	153	INH	Assoc w R	WHO 2021
pncA_V130G	pncA	2288853	A	с	c.389T)-G	p.Val130	147	100.00	147	PZA	Assoc w R	WHO 2021
emb8_M3	embB	4247429	A	G	c.916A>G	p.Met30	123	100.00	123	EMB	Assoc w R	WHO 2021

Variant (co mmon_na me)	Gene	Genome P osition	Ref nt	Alt nt	Codon cha nge	Amino Aci d change	Number o f reads for the positio n (coverag e)	Variant fre quency (%)	Variant De pth	Drug	WHO Conf idence	Reference
gyrA_E21Q	gyrA	7362	G	с	c.6%-C	p.Glu21Gin	154	100.00	154	LEV	Not ass	WHO 2021
gyrA_E21Q	gyrA	7362	G	с	c.6%G+C	p.Glu21Gin	154	100.00	154	MXF	Not ass	WHO 202
gyrA_S95T	gyrA	7585	G	с	c.284G+C	p.Ser95Thr	131	100.00	131	LEV	Not ass	WHO 202
gyrA_\$95T	gyrA	7585	G	с	c.284G>C	p.Ser95Thr	131	100.00	131	MOUF	Not ass	WHO 2021
gyrA_G668D	gyrA	9304	G	А	c.2003G>A	p.Gly668	137	100.00	137	LEV	Not ass	WHO 2021
gyrA_G668D	gyrA	9304	G	A	c.2003G>A	p.Gly668	137	100.00	137	MORE	Not ass	WHO 2021
mshA_A1	mshA	575907	с	т	c.560C>T	p.Ala187Val	130	100.00	130	ETH	Uncertai	WHO 202

Figure 4. Screenshot of Drug resistance prediction results of Sample 1:

Overall mutations identified. Variants associated with resistance and Variants not associated with resistance or uncertain significance.

Table 3. Drug resistance and mutation information not associated with resistance or uncertain significance in Sample 1(Strain number: CMCC 94002):

	Variants not associated with resistance or uncertain significance in Sample 1 (Strain number: CMCC 94002)											
Variant (common _name)	Gene	Genome Position	Ref nt	Alt nt	Codon change	Amino Acid change	Number of reads for the position (coverage)	Variant frequency (%)	Variant Depth	Drug	WHO Confidence	Refer- ence
gy- rA_E21Q	gyrA	7362	G	с	c.61G> C	p Glu21Gln	154	100	154	LEV	Not assoc w R	WHO 2021
gy- rA_E21Q	gyrA	7362	G	С	c.61G> C	p Glu21Gln	154	100	154	MXF	Not assoc w R	WHO 2021
gy- rA_S95T	gyrA	7585	G	С	c.284G >C	p.Ser95T hr	131	100	131	LEV	Not assoc w R	WHO 2021
gy- rA_S95T	gyrA	7585	G	С	c.284G >C	p.Ser95T hr	131	100	131	MXF	Not assoc w R	WHO 2021
gy- rA_G668D	gyrA	9304	G	A	c.2003 G>A	p.Gly668 Asp	137	100	137	LEV	Not assoc w R	WHO 2021
gy- rA_G668D	gyrA	9304	G	A	c.2003 G>A	p.Gly668 Asp	137	100	137	MXF	Not assoc w R	WHO 2021
mshA_A1 87V	mshA	575907	С	т	c.560C >T	p.A- la187Val	130	100	130	ETH	Uncertain significance	WHO 2021
mshA_A1 87V	mshA	575907	С	т	c.560C >T	p.A- la187Val	130	100	130	INH	Not assoc w R	WHO 2021
ccsA_l245 M	ccsA	620625	А	G	c.735A> G	p.lle245 Met	154	100	154	AMI	Not assoc w R	WHO 2021
ccsA_l245 M	ccsA	620625	A	G	c.735A> G	p.lle245 Met	154	100	154	CAP	Not assoc w R	WHO 2021
mmpL5_I 948V	mmpL5	775639	т	с	c.2842 A>G	p.Ile948 Val	151	100	151	BDQ	Not assoc w R	WHO 2021

For Research Use Only. Not for use in diagnostic procedures.

Variant (common _name)	Gene	Genome Position	Ref nt	Alt nt	Codon change	Amino Acid change	Number of reads for the position (coverage)	Variant frequency (%)	Variant Depth	Drug	WHO Confidence	Refer- ence
mmpL5_I 948V	mmpL5	775639	т	С	c.2842 A>G	p.lle94 8Val	151	100	151	CFZ	Not assoc w R	WHO 2021
mmpL5_T 794I	mmpL5	776100	G	A	c.2381C >T	p.Thr79 4lle	130	100	130	BDQ	Not assoc w R	WHO 2021
mmpL5_T 7941	mmpL5	776100	G	A	c.2381C >T	p.Thr79 4lle	130	100	130	CFZ	Not assoc w R	WHO 2021
mmpL5_ D767N	mmpL5	776182	С	т	c.2299 G>A	p.Asp76 7Asn	132	100	132	BDQ	Not assoc w R	WHO 2021
mmpL5_ D767N	mmpL5	776182	С	т	c.2299 G>A	p.Asp76 7Asn	132	100	132	CFZ	Not assoc w R	WHO 2021
rps L_t-165c	rpsL	781395	т	с	c165T >C	NA	143	100	143	STM	Not assoc w R	WHO 2021
fbiC_P42 OL	fbiC	1304189	С	т	c.1259C >T	p. Pro420 Leu	155	100	155	DLM	Uncertain signifi cance	WHO 2021
Rv1258c_5 81_ins_1_t _tg	Rv1258c	1406760	т	TG	c.580_5 81insC	p. Glu194f s	100	99	99	INH	Not assoc w R	WHO 2021
Rv1258c_5 81_ins_1_t _tg	Rv1258c	1406760	т	TG	c.580_5 81insC	p. Glu194f s	100	99	99	PZA	Not assoc w R	WHO 2021
Rv1258c_5 81_ins_1_t _tg	Rv1258c	1406760	т	TG	c.580_5 81insC	p. Glu194f s	100	99	99	STM	Not assoc w R	WHO 2021
rrs_c-187t	mcr3	1471659	С	т	n.41C>T	NA	124	100	124	AMI	Not assoc w R	WHO 2021
rrs_c-187t	mcr3	1471659	С	т	n.41C>T	NA	124	100	124	CAP	Not assoc w R	WHO 2021
rrs_c-187t	mcr3	1471659	С	т	n.41C>T	NA	124	100	124	KAN	Not assoc w R	WHO 2021
rrs_c-187t	mcr3	1471659	С	т	n.41C>T	NA	124	100	124	LZD	Not assoc w R	WHO 2021
rrs_c-187t	mcr3	1471659	С	т	n.41C>T	NA	124	100	124	STM	Not assoc w R	WHO 2021
kat G_Y597H	katG	2154323	А	G	c.1789T>C	p.Tyr59 7His	135	100	135	INH	Uncertain signifi cance	WHO 2021
kat G_N596S	katG	2154325	т	с	c.1787A>G	p.Asn5 96Ser	130	100	130	INH	Uncertain signifi cance	WHO 2021

Variant (common _name)	Gene	Genome Position	Ref nt	Alt nt	Codon change	Amino Acid change	Number of reads for the position (coverage)	Variant frequency (%)	Variant Depth	Drug	WHO Confidence	Refer- ence
kat G_R463L	katG	2154724	С	А	c.1388G >T	p.Arg4 63Leu	146	100	146	INH	Not assoc w R	WHO 2021
PPE35_L8 96S	PPE35	2167926	А	G	c.2687T >C	p.Leu8 96Ser	151	99.34	150	PZA	Not assoc w R	WHO 2021
Rv1979c_a -129g	Rv1979c	2223293	т	с	c129A >G	NA	175	100	175	BDQ	Not assoc w R	WHO 2021
Rv1979c_a -129g	Rv1979c	2223293	т	с	c129A >G	NA	175	100	175	CFZ	Not assoc w R	WHO 2021
Rv3236c_ T102A	Rv3236c	3612813	т	с	c.304A >G	p.Thr1 02Ala	149	100	149	PZA	Not assoc w R	WHO 2021
aft B_D397G	aftB	4267647	т	с	c.1190A >G	p.Asp3 97Gly	125	100	125	AMI	Not assoc w R	WHO 2021
aft B_D397G	aftB	4267647	т	с	c.1190A >G	p.Asp3 97Gly	125	100	125	CAP	Not assoc w R	WHO 2021
whiB67 4_del_1_g c_g	whiB6	4338595	GC	G	c75del G	NA	127	100	127	AMI	Not assoc w R	WHO 2021
whiB67 4_del_1_g c_g	whiB6	4338595	GC	G	c75del G	NA	127	100	127	CAP	Not assoc w R	WHO 2021
whiB67 4_del_1_g c_g	whiB6	4338595	GC	G	c75del G	NA	127	100	127	STM	Not assoc w R	WHO 2021
gid_E92D	gid	4407927	т	G	c.276A> C	p. Glu92A sp	122	100	122	STM	Not assoc w R	WHO 2021

Information on mutations identified in sample 1. but not included in the WHO catalogue was displayed in the "other mutations" results. as shown in Figure 5.

Gene	Genome Positio n	Ref nt	Alt nt	Codon change	Amino Acid chan ge	Number of reads for the position (coverage)	Variant frequenc y(%)	Variant Depth
dnaA	1456	G	A	c.1456G>A	p.Glu486Lys	169	100.00	169
NA	1849	с	A	c203C+A	NA	142	100.00	142
NA	1977	A	G	c75Ao-G	NA	137	100.00	137
rec#	4013	т	с	c.734T>C	p.le245Thr	132	100.00	132
NA	11820	c	G	c648C>G	NA	133	100.00	133
Rv0008c	11879	A	G	c.433T>C	p.Ser145Pro	153	99.35	152

Figure 5. Screenshot of Other mutations results of Sample 1.

Evolutionary tracing

It is hypothesized that the ancestors of Mycobacterium tuberculosis once had an environmental reservoir and gradually evolved to adapt to the life within host cells. leading finally to the feature of getting transmitted from one host to another. It seems conceivable that the individual adaptations of the different mycobacterial species to specific environmental conditions went along with genome downsizing. gene acquisition through horizontal gene transfer, genome rearrangements, and/or recombination. Hence, evolutionary tracing of the sequenced specimens will give valuable information on the global evolution tree of the identified sample. The MTB-Explorer Software compared the assembled genome with the database, calculated the genetic distance, and constructed an evolutionary tree to show its relationship with other reported subtypes of Mycobacterium tuberculosis. The evolution tree results of sample 1 was shown in Figure 6.

	GCA_001842045.1/2010/Peru
	GCA_002447655.1/2006/Peru
	GCA_016917775.1/2017/Belarus
	-
	OCA_026167585.1/2006/Belarus/BLR-31d
	OCA_027912555.1/2010/Belarus/BLR.9248.2019
	GCA_002446975.1/2003/Peru
	OCA_002446995.1/2006/Peru
	OCA_001544705.1/2020/USA
	OCA_000195955.2/2010/Bulgaria
	OCA_000751475.1/2010/Peru
	OCA_001842775.1/2019/Peru
	GCA_001895805.1/2010/Peru
	GCA_001895845.1/2010/Peru
	GCA_002447095.1/2016/Peru
	- GCA_002447115.1/2010/Pers
	GCA_002447175.1/2009/Peru
	GCA_002447195.1/2011/Peru
	OCA_002447215.1/2000/Peru
	 OCA_002447235.1/2000/Peru
	OCA_002447475.1/2000/Peru
	OCA_002447615.1/2008/Peru
	GCA_002447635.1/2010/Peru
	GCA_002447855.1/2017/Peru
	GCA_002448055.1/2000/Peru
	GCA_003265005.1/2008/Ramia
	GCA_017164095.1/2016/Russia
	GCA_017164055.1/2008/Russia
	GCA_001842095.1/2003/Peru
	GCA_001275565.2/2003/0Cazakhetan
	OCA_001841105.1/2016/Pers
1	OCA_000263135.1/2008/Panama/H37RvCO
	OCA_000277735.2/2016/Russia
	OCA_000827085.1/2012/South.Africa/H37RvSiena
	GCA_001597645.2/2010/Malaysia/SIT745/EAI1-MY5
	GCA_013267635.1/2008/USA
	GCA_017901095.1/2020/USA
	GCA_017901055.1/2020/USA
	GCA_017901075.1/2020/USA
	GCA_017901095.1/2020/USA
	QCA_017901115.1/2020/USA
	OCA_026185275.1/2010/USA
	OCA 000193185 2/2011/Ethiopia/W-148
	OCA 002946495 1/2010/India/L/319
	GCA_0024473951/2004/Peru
	GCA_002447595.1/2019/Peru
	Pl new
	OCA_000572175.1/2016/Peru
	GCA_001841845.1/2005/Peru
	GCA_002446915.1/2010/Peru
	GCA_001942195.1/2011/Peru GCA_001942195.1/2011/Peru
	GCA_001447955.1/2017/Peni GCA_002447955.1/2017/Peni
	Non_Wart (202.1/201 //P88

Figure 6. Evolutionary tracing results of Sample 1.

Summary

MGI's MTB-Explorer Software portfolio based on the sequencing of sixteen reference standard sample using WGS method on DNBSEQ-G99ARS platform was demonstrated as an accurate predictive software with the characteristics of fast whole process together with excellent data quality of DNBSEQ-G99ARS, complete analysis functions for the precise identification, monitoring and early warning, traceability analysis, and precise prevention and control of tuberculosis infection. Thus, MTB-Explorer Software is demonstrated to provide a powerful tool for the identification of individual strains of Mycobacterium tuberculosis to diagnostic companies and genomic researchers as well.

Ordering informatio

Products	Specifications	Item No.
Device		
MGISP-100RS Automated Sample Preparation System	Standard configuration	900-000070-00
DNBSEQ-G99ARS Genetic Sequencers	High configuration	900-000560-00
Kits		
MGIEasy Fast FS DNA Library Prep Set	96 RXN	940-000027-00
MGIEasy Fast FS DNA Library Prep Set	16 RXN	940-000029-00
DNBSEQ One-step DNB preparation kit (OS_DB)	4 RXN	1000026466
DNBSEQ-G99RS High-throughput Sequencing Set (G99 SM FCL PE150)	FCL PE150	940-000410-00
Software		
MTB-Explorer Software	/	970-000385-00

References

- 1. Kerubo G et al. (2016) Drug susceptibility profiles of pulmonary Mycobacterium tuberculosis isolates from patients in informal urban settlements in Nairobi. Kenya. BMC Infectious Diseases 16, 583.
- 2. Urassa W, Mugusi F, Villamor E, Msamanga G, Moshiro C, Bosch R, Saathoff E, Fawzi W. Primary antimicrobial resistance among Mycobacterium tuberculosis isolates from HIV seropositive and HIV seronegative patients in Dar es Salaam Tanzania. BMC Res Notes. 2008;1:58. doi: 10.1186/1756-0500-1-58.
- 3. Wells CD. Cegielski JP. Nelson LJ. Laserson KF. Holtz TH. Finlay A. Castro KG. Weyer K. HIV Infection and Multidrug-Resistant Tuberculosis—The Perfect Storm. J Infect Dis. 2007;196:S86 107. doi: 10.1086/518665.
- 4. Walker TM, Miotto P, Kser CU, Fowler PW, Knaggs J, Iqbal Z, Hunt M, Chindelevitch L, Farhat M, Cirillo DM, Comas I, Posey J, Omar SV, Peto TE, Suresh A, Uplekar S, Laurent S, Colman RE, Nathanson CM, Zignol M, Walker AS: CRyPTIC Consortium: Seq&Treat Consortium: Crook DW, Ismail N, Rodwell TC. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: A genotypic analysis. Lancet Microbe. 2022 Apr:3(4):e265-e273. doi: 10.1016/S2666-5247(21)00301-3. PMID: 35373160; PMCID: PMC7612554.

MGI Tech Co.,Ltd

Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, China

♥ +86-4000-688-114

en.mgi-tech.com

🖾 MGI-service@mgi-tech.com

The copyright of this brochure is solely owned by MGI Tech Co. Ltd.. The information included in this brochure or part of, including but not limited to interior design, cover design and icons, is strictly forbidden to be reproduced or transmitted in any form, by any means (e.g. electronic, photocopying, recording, translating or otherwise) without the prior written permission by MGI Tech Co., Ltd.