

# MGI pathogens metagenomic sequencing products <sup>%</sup> package based on DNBSEQ-G99

A fast and accurate sequencing solution that provides a powerful tool for the identification of unknown pathogens and epidemiological research.

# Highlights

# Short TAT

With the DNBSEQ-G99ARS sequencer, PE100 sequencing can be completed in 9 hours.

## • Excellent data quality

The unique DNBSEQ sequencing technology provides high-quality sequencing data for downstream analysis.

## Automation friendly

With the MGISP-100 automated library preparation system and data analysis software, automated library preparation and data analysis can be achieved, reducing manual labor.

## Comprehensive analysis functions

The self-developed software meets the needs of identification, genome assembly, variation detection and traceability.

# Introduction

Based on MGI's reagents, automated sample preparation systems, high-throughput sequencing platforms and data processing systems, the entire process from sample to result is covered. This enables fast and accurate high-throughput sequencing of samples, allowing for pathogenic microbiome typing, genome assembly, prediction of virulence and drug resistance genes, and systematic evolutionary analysis, provides tool for the precise identification, monitoring, early warning, tracing of epidemics.





DNBSEQ-G99ARS is one of the fastest models among global mid-sized sequencer. capable of completing PE150 sequencing in 12 hours. It provides efficient and high-quality data output. With built-in computational modules, it achieves integration of sequencing and bioinformatics analysis. It can be used with the BBS (Bioanalysis By Sequencing) to perform data analysis in SE40. SE100, and PE100 formats, enabling rapid identification of pathogens.

#### Table 1. Parameters

| Intended use                | Reads length           | Reads number         | Samples/FC                    |
|-----------------------------|------------------------|----------------------|-------------------------------|
| RNA pathogens<br>sequencing | Identification: SE50   | Identification: 20M  | Identification: 4 samples/FC  |
|                             | Genome assemble: PE100 | Genome assemble: 80M | Genome assemble: 1 samples/FC |

The MGAP is based on MPS and genomics technology, which enables the assembly of genomes, systematic evolutionary analysis, and automatic calculation of variation detection results from sequencing data. It also allows flexible selection of analysis modules according to specific needs. The Pathogen Fast Identification software (PFI) is a microbial rapid identification system developed based on the DNBSEQ sequencing platform. It enables fast and accurate identification of microorganisms in the original specimens, automatically generating analysis results, and providing reference for the study of infectious diseases.

# Performance

A simulated sample containing swine transmissible gastroenteritis virus (TGEV) RNA was prepared. sequenced, and analyzed. The sample consisted of 1% virus RNA and 99% Universal Human Reference RNA. The total number of reads obtained was 121 million reads, with a Q30 score of 96%. The splitting rate was above 92%, meeting the requirements for downstream analysis.

## Table 2. Data QC

| Total reads (M) | Q30 (%) | SplitRate (%) |
|-----------------|---------|---------------|
| 121.1           | 96.69   | 92.3          |

Based on software analysis, the sample was identified at the genus level as Alphacoronavirus 1 and at the subgenus level as Transmissible gastroenteritis virus, as shown in Table 3 and Table 4. The analysis results are consistent with expectations.

| Туре     | Scientific Name                 | Real Reads | Estimated<br>Reads | Relative<br>Abundance |  |
|----------|---------------------------------|------------|--------------------|-----------------------|--|
| Viruses  | Alphacoronavirus 1              | 110,118    | 110,118            | 80.90%                |  |
| Viruses  | Porcine epidemic diarrhea virus | 13,147     | 13,147             | 9.66%                 |  |
| Bacteria | Pseudomonas putida              | 344        | 5,057              | 3.72%                 |  |
| Viruses  | Alphapapillomavirus 7           | 2,996      | 2,996              | 2.20%                 |  |
| Bacteria | Pseudomonas stutzeri            | 257        | 2,147              | 1.58%                 |  |
| Bacteria | Ralstonia mannitolilytica       | 159        | 1,546              | 1.14%                 |  |
| Bacteria | Pseudomonas fluorescens         | 74         | 991                | 0.73%                 |  |
| Bacteria | Thermus aquaticus               | 97         | 116                | 0.08%                 |  |

### Table 3. species identification results

Table 4. subspecies identification results

| Туре    | Scientific Name                     | Real Reads | Estimated<br>Reads | Relative<br>Abundance |
|---------|-------------------------------------|------------|--------------------|-----------------------|
| Viruses | Transmissible gastroenteritis virus | 46,717     | 154,587            | 100.00%               |

The results of the reference-based assembly show a mapping rate of 100% and a coverage of over 99%. The assembly quality is excellent.

#### Table 5. sAssembly result

| Mapped | Mapping | Mean  | Median | Coverage (%) | 4×Coverage | 10×Coverage | 30×Coverage | 100×Coverage |
|--------|---------|-------|--------|--------------|------------|-------------|-------------|--------------|
| reads  | rate    | depth | depth  |              | (%)        | (%)         | (%)         | (%)          |
| 220225 | 100.00  | 769   | 707    | 100.00       | 99.92      | 99.86       | 99.86       | 99.63        |

For Research Use Only. Not for use in diagnostic procedures.

The PFI software analyzed virulence genes and antibiotic resistance genes based on the public databases "VFDB" and "MEGARes". The annotation results are provided in Table 6 and Table 7.

| Virulence Factor                             | Microorganism                                                            | Virulence Protein       | Coverage | Depth |
|----------------------------------------------|--------------------------------------------------------------------------|-------------------------|----------|-------|
| Z1307                                        | Escherichia coli O157:H7 str. EDL933                                     | VFG043544(gi:15800816)  | 98.37    | 16.92 |
| ECS88_3547                                   | Escherichia coli O45:K1:H7 str. S88                                      | VFG043545(gi:218560235) | 76.58    | 7.24  |
| rpoS) sigma S (sigma 38                      | Salmonella enterica subsp. enterica serovar Typhimurium str. LT2         | VFG000477(gi:16766230)  | 96.67    | 5.23  |
| fimA) major type 1 subunit fimbrin<br>(pilin | Escherichia coli O111:H- str. 11128                                      | VFG033211(gi:260871034) | 68.80    | 1.26  |
| fimC                                         | Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-<br>B67 | VFG004079(gi:3333009)   | 58.70    | 1.07  |
| flgG                                         | Pseudomonas putida GB-1                                                  | VFG015654(gi:167034941) | 63.69    | 0.89  |
| Z2200                                        | Escherichia coli O157:H7 str. EDL933                                     | VFG042713(gi:15801631)  | 39.61    | 0.71  |
| mucA                                         | Pseudomonas fluorescens SBW25                                            | VFG019912(gi:229588995) | 53.66    | 0.68  |
| flgH                                         | Pseudomonas putida GB-1                                                  | VFG015656(gi:167034940) | 56.69    | 0.58  |
| figF                                         | Pseudomonas putida GB-1                                                  | VFG015652(gi:167034942) | 48.24    | 0.54  |

### Table 6. virulence genes analysis result

#### Table 7. Resistance genes analysis results

| Group | Gene     | Class                                 | Mechanism                                          | Туре           | Coverage | Depth |
|-------|----------|---------------------------------------|----------------------------------------------------|----------------|----------|-------|
| SODB  | MEG_6545 | Peroxide resistance                   | peroxide resistance protein                        | Biocides       | 100.00   | 15.08 |
| үснн  | MEG_7813 | Biocide and metal<br>resistance       | Biocide and metal resistance protein               | Multi-compound | 91.01    | 11.32 |
| RPOS  | MEG_6141 | Multi-biocide resistance              | Multi-biocide resistance<br>regulator              | Biocides       | 98.93    | 8.17  |
| YGIW  | MEG_7831 | Biocide and metal<br>resistance       | Biocide and metal resistance<br>protein            | Multi-compound | 98.47    | 6.61  |
| GADA  | MEG_3076 | Acid resistance                       | Acid resistance protein                            | Biocides       | 75.57    | 3.07  |
| SOXS  | MEG_6551 | Drug and biocide and metal resistance | Drug and biocide and metal<br>resistance regulator | Multi-compound | 98.76    | 2.48  |
| CUEO  | MEG_2440 | Copper resistance                     | Copper resistance protein                          | Metals         | 93.03    | 2.32  |
| TOLC  | MEG_7263 | Multi-biocide resistance              | Multi-biocide RND efflux<br>pump                   | Biocides       | 94.08    | 2.29  |
| COPA  | MEG_2020 | Copper resistance                     | Copper resistance protein                          | Metals         | 52.96    | 2.23  |
| СОРА  | MEG_2019 | Copper resistance                     | Copper resistance protein                          | Metals         | 67.89    | 2.08  |



# Ordering information

| Products                                                | Specifications | ltem No.      |
|---------------------------------------------------------|----------------|---------------|
| Instrument                                              |                |               |
| DNA Sequencing Library Preparation System MGISP-100RS   | Standard       | 900-000206-00 |
| DNBSEQ-G99ARS                                           | With server    | 900-000609-00 |
| Reagent                                                 |                |               |
| MGIEasy rRNA Depletion Kit                              | 32 RXN         | 1000005953    |
| MGIEasy RNA Library Prep Set                            | 16 RXN         | 1000006383    |
| MGIEasy RNA Library Prep Set                            | 96 RXN         | 1000006384    |
| DNBSEQ OneStep DNB Make Reagent Kit                     | 4 RXN          | 1000026466    |
| High-throughput Sequencing Set (G99 SM FCL PE150)       | 1 Test / Kit   | 940-000410-00 |
| Software                                                |                |               |
| Platform of microorganisms Fast Identification software |                | 970-000208-00 |
| MGI MGAP                                                |                | 970-000109-00 |

# MGI Tech Co.,Ltd.

Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, China

en.mgi-tech.com

MGI-service@mgi-tech.com



+86-4000-688-114

The copyright of this brochure is solely owned by MGI Tech Co. Ltd.. The information included in this brochure or part of, including but not limited to interior design, cover design and icons, is strictly forbidden to be reproduced or transmitted in any form, by any means (e.g. electronic, photocopying, recording, translating or otherwise) without the prior written permission by MGI Tech Co., Ltd.