

MGI pathogens metagenomic sequencing products [%] package based on DNBSEQ-G99

A fast and accurate sequencing solution that provides a powerful tool for the identification of unknown pathogens and epidemiological research.

Highlights

Fast turnaround time throughout the entire process

With the DNBSEQ-G99ARS sequencer, library preparation, sequencing, and analysis can be completed in 14.5 hours.

• Excellent data quality

The unique DNBSEQ sequencing technology provides high-quality sequencing data for down-stream analysis.

High level of automation

Combined with the MGISP-100 and data analysis software, automated library preparation and data analysis can be achieved, reducing manual labor.

• Comprehensive analysis capabilities

The self-developed software meets the needs of pathogen identification, genome assembly, mutation monitoring, and traceability requirements.

Introduction

Based on MGI's reagents, automated sample preparation systems, high-throughput sequencing platforms and data processing systems, the entire process from sample to result is covered. This enables fast and accurate high-throughput sequencing of samples, allowing for pathogenic microbiome typing, genome assembly, prediction of virulence and drug resistance genes, and systematic evolutionary analysis, provides tool for the precise identification, monitoring, early warning, tracing of epidemics.

DNBSEQ-G99ARS is one of the fastest models among global mid-sized sequencer. capable of completing PE150 sequencing in 12 hours. It provides efficient and high-quality data output. With built-in computational modules, it achieves integration of sequencing and bioinformatics analysis. It can be used with the BBS (Bioanalysis By Sequencing) to perform data analysis in SE40. SE100, and PE100 formats, enabling rapid identification of pathogens.

Table 1. Parameters

Intended use	Reads length	Reads number	Samples/FC	
DNA pathogens	Identification: SE50	Identification: 20M	Identification: 4 samples/FC	
sequencing	Genome assemble: PE100	Genome assemble: 80M	Genome assemble: 1 samples/FC	

The MGAP is based on MPS and genomics technology, which enables the assembly of genomes, systematic evolutionary analysis, and automatic calculation of variation detection results from sequencing data. It also allows flexible selection of analysis modules according to specific needs. The Pathogen Fast Identification software (PFI) is a microbial rapid identification system developed based on the DNBSEQ sequencing platform. It enables fast and accurate identification of microorganisms in the original specimens, automatically generating analysis results, and providing reference for the study of infectious diseases.

Performance

The library preparation. sequencing. and analysis were performed on four simulated pathogen samples (NA12878 standard + microbial DNA). The results after sequencing are as follows: total reads > 110M. Q30 > 95%. split rate > 96%. The data output and quality are excellent.

Table 2. Data QC

Total reads (M)	Q30 (%)	SplitRate (%)
110.17	95.22	96.95

The pathogen identification results of the four simulated samples are consistent with expectations, and the abundance of reads detected for each bacterial species is close to the theoretical abundance, as shown in Table 3.

Species	Sample1	Sample2	Sample3	Sample4	theoretical abundance	Mean	SD	CV
Salmonella enterica	15.87%	15.60%	15.72%	15.87%	12.00%	15.77%	0.13%	0.008
Pseudomonas aeruginosa	14.12%	14.00%	13.83%	14.12%	12.00%	14.02%	0.14%	0.010
Bacillus subtilis	13.30%	13.14%	13.46%	13.30%	12.00%	13.30%	0.13%	0.010
Escherichia coli	11.75%	12.32%	11.90%	11.75%	12.00%	11.93%	0.27%	0.023
Enterococcus faecalis	11.13%	11.30%	11.24%	11.13%	12.00%	11.20%	0.08%	0.008
Listeria monocytogenes	11.12%	11.02%	11.12%	11.12%	12.00%	11.10%	0.05%	0.005
Staphylococcus aureus	10.18%	10.23%	10.30%	10.18%	12.00%	10.22%	0.06%	0.006
Limosilactobacillus fermentum	9.52%	9.48%	9.46%	9.52%	12.00%	9.50%	0.03%	0.003
Cryptococcus neoformans	1.49%	1.49%	1.52%	1.49%	2.00%	1.50%	0.02%	0.010
Saccharomyces cerevisiae	1.47%	1.42%	1.45%	1.47%	2.00%	1.45%	0.02%	0.016

Table 3. Identification results

Taking one of the samples as an example, the PFI software was used to identify the species and subspecies levels. The identification results are shown in Table 4 and Table 5, and they are consistent with expectations.

Туре	Scientific Name	Real Reads	Estimated Reads	Relative Abundance
Bacteria	Salmonella enterica	16,432	30,820	15.96%
Bacteria	Pseudomonas aeruginosa	1,340	26,947	13.96%
Bacteria	Bacillus subtilis	12,406	25,682	13.30%
Bacteria	Escherichia coli	653	22,875	11.85%
Bacteria	Enterococcus faecalis	20,022	21,947	11.37%
Bacteria	Listeria monocytogenes	13,728	21,183	10.97%
Bacteria	Staphylococcus aureus	10,950	19,885	10.30%
Bacteria	Limosilactobacillus fermentum	16,331	18,025	9.34%
Fungi	Cryptococcus neoformans	2,736	2,894	1.50%
Fungi	Saccharomyces cerevisiae	2,191	2,798	1.45%

Table 4. species identification results

Table 5. subspecies identification results

Туре	Scientific Name	Real Reads	Estimated Reads	Relative Abundance
Fungi	Saccharomyces cerevisiae S288C	2,187	3,158	52.10%
Fungi	Cryptococcus neoformans var. grubii	988	1,517	25.03%
Fungi	Cryptococcus neoformans var. neoformans	1,365	1,384	22.84%

Our software also performed analysis and annotation of virulence and resistance factors for this sample. The results are shown in Table 6 and Table 7. The analysis results can provide reference for studying the pathogenic mechanisms and drug resistance of microorganisms.

Virulence Factor	Microorganism	Virulence Protein	Coverage	Depth
ospC4	Shigella boydii Sb227	VFG012785(gl:3776756)	57.00	5.58
ycbV) putative fimbrial-like protein [E. coli YcbQ laminin-binding fimbriae (ELF	Escherichia coli O157:H7 str. EDL933	VFG042403(gi:15800803)	84.90	2.49
pilV	Pseudomonas aeruginosa PAO1	VFG001207(gb NP_253241)	78.82	2.15
vgrG2	Pseudomonas aeruginosa PAO1	VFG041012(gi:15596708)	74.92	1.97
fliS	Escherichia coli O157:H7 str. EDL933	VFG043104(gi:15802360)	86.34	1.94
sfaB	Staphylococcus aureus subsp. aureus str. Newman	VFG044275(gi:151222292)	88.28	1.94
sbnG	Staphylococcus aureus subsp. aureus str. Newman	VFG044260(gi:151220278)	81.90	1.93
fiil	Escherichia coli O157:H7 str. EDL933	VFG043110(gi:161367587)	90.82	1.89
fss1	Enterococcus faecalis V583	VFG043508(gb NP_813892)	83.63	1.78
cheY	Salmonella enterica subsp. enterica serovar Typhimurium str. LT2	VFG043037(gi:16765258)	93.32	1.77

Table 6. virulence genes analysis result

Table 7. Resistance genes analysis results

Group	Gene	Class	Mechanism	Туре	Coverage	Depth
TETL	MEG_7095	Tetracyclines	Tetracycline resistance MFS efflux pumps	Drugs	98.76	15.26
ANT4- PRIME	MEG_978	Aminoglycosides	Aminoglycoside O- nucleotidyltransferases	Drugs	98.57	12.72
TETL	MEG_7093	Tetracyclines	Tetracycline resistance MFS efflux pumps	Drugs	82.49	10.17
QACG	MEG_5846	Drug and biocide resistance	Drug and biocide SMR efflux pumps	Multi-compound	99.38	4.29
ANT4- PRIME	MEG_981	Aminoglycosides	Aminoglycoside O- nucleotidyltransferases	Drugs	86.36	4.29
ANT4- PRIME	MEG_983	Aminoglycosides	Aminoglycoside O- nucleotidyltransferases	Drugs	52.04	2.63
ZUPT	MEG_7865	Biocide and metal resistance	Biocide and metal resistance protein	Multi-compound	82.56	2.26
SITB	MEG_6514	Biocide and metal resistance	Biocide and metal ABC efflux pumps	Multi-compound	87.09	1.71
MEXE	MEG_3909	Drug and biocide resistance	Drug and biocide RND efflux pumps	Multi-compound	79.42	1.69
ACRA	MEG_399	Drug and biocide resistance	Drug and biocide RND efflux pumps	Multi-compound	86.84	1.68

For Research Use Only. Not for use in diagnostic procedures.

Ordering information

Products	Specifications	ltem No.
Sequencer		
DNA Sequencing Library Preparation System MGISP-100RS	Standard	900-000206-00
DNBSEQ-G99ARS	With server	900-000609-00
Reagent		
MGIEasy Fast FS DNA Library Prep Set	96 RXN	940-000027-00
MGIEasy Fast FS DNA Library Prep Set	16 RXN	940-000029-00
DNBSEQ OneStep DNB Make Reagent Kit	4 RXN	1000026466
High-throughput Sequencing Set (G99 SM FCL PE150)	1 Test / Kit	940-000410-00
Software		
Platform of microorganisms Fast Identification software		970-000208-00
MGI MGAP	——	970-000109-00

MGI Tech Co.,Ltd.

Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, China

en.mgi-tech.com

MGI-service@mgi-tech.com

+86-4000-688-114

The copyright of this brochure is solely owned by MGI Tech Co. Ltd.. The information included in this brochure or part of, including but not limited to interior design, cover design and icons, is strictly forbidden to be reproduced or transmitted in any form, by any means (e.g. electronic, photocopying, recording, translating or otherwise) without the prior written permission by MGI Tech Co., Ltd.